目前,我正在使用Spark结构化流式传输来创建(id,timestamp_value,device_id,temperature_value,comment)形式的随机数据的数据帧。
每批火花数据帧:
基于上面数据框的屏幕截图,我想对“ temperature_value”列进行一些描述性统计。例如,最小值,最大值,平均值,计数,方差。
我在python中实现此目标的方法如下:
import sys
import json
import psycopg2
from pyspark import SparkContext
from pyspark.streaming import StreamingContext
from pyspark.sql import SparkSession
from pyspark.sql.types import StructType, StructField, StringType, IntegerType
from pyspark.sql.functions import from_json, col, to_json
from pyspark.sql.types import *
from pyspark.sql.functions import explode
from pyspark.sql.functions import split
from pyspark.sql.functions import get_json_object
from pyspark.ml.stat import Summarizer
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.feature import StandardScaler
from pyspark.sql.functions import lit,unix_timestamp
from pyspark.sql import functions as F
import numpy as np
from pyspark.mllib.stat import Statistics
spark = SparkSession.builder.appName(<spark_application_name>).getOrCreate()
spark.sparkContext.setLogLevel("WARN")
spark.streams.active
data = spark.readStream.format("kafka").option("kafka.bootstrap.servers", "kafka_broker:<port_number>").option("subscribe", <topic_name>).option("startingOffsets", "latest").load()
schema = StructType([
StructField("id", DoubleType()),
StructField("timestamp_value", DoubleType()),
StructField("device_id", DoubleType()),
StructField("temperature_value", DoubleType()),
StructField("comment", StringType())])
telemetry_dataframe = data.selectExpr("CAST(value AS STRING)").select(from_json(col("value").cast("string"), schema).alias("tmp")).select("tmp.*")
telemetry_dataframe.printSchema()
temperature_value_selection = telemetry_dataframe.select("temperature_value")
temperature_value_selection_new = temperature_value_selection.withColumn("device_temperature", temperature_value_selection["temperature_value"].cast(DecimalType()))
temperature_value_selection_new.printSchema()
assembler = VectorAssembler(
inputCols=["device_temperature"], outputCol="temperatures"
)
assembled = assembler.transform(temperature_value_selection_new)
assembled_new = assembled.withColumn("timestamp", F.current_timestamp())
assembled_new.printSchema()
# scaler = StandardScaler(inputCol="temperatures", outputCol="scaledTemperatures", withStd=True, withMean=False).fit(assembled)
# scaled = scaler.transform(assembled)
summarizer = Summarizer.metrics("max", "min", "variance", "mean", "count")
descriptive_table_one = assembled_new.withWatermark("timestamp", "4 minutes").select(summarizer.summary(assembled_new.temperatures))
#descriptive_table_one = assembled_new.withWatermark("timestamp", "4 minutes").groupBy(F.col("timestamp")).agg(max(F.col('timestamp')).alias("timestamp")).orderBy('timestamp', ascending=False).select(summarizer.summary(assembled.temperatures))
#descriptive_table_one = assembled_new.select(summarizer.summary(assembled.temperatures))
# descriptive_table_two = temperature_value_selection_new.select(summarizer.summary(temperature_value_selection_new.device_temperature))
# -------------------------------------------------------------------------------------
#########################################
# QUERIES #
#########################################
query_1 = telemetry_dataframe.writeStream.outputMode("append").format("console").trigger(processingTime = "5 seconds").start()#.awaitTermination()
query_2 = temperature_value_selection_new.writeStream.outputMode("append").format("console").trigger(processingTime = "8 seconds").start()#.awaitTermination()
query_3= assembled_new.writeStream.outputMode("append").format("console").trigger(processingTime = "11 seconds").start()#.awaitTermination()
#query_4_1 = descriptive_table_one.writeStream.outputMode("complete").format("console").trigger(processingTime = "14 seconds").start()#.awaitTermination()
query_4_2 = descriptive_table_one.writeStream.outputMode("append").format("console").trigger(processingTime = "17 seconds").start()#.awaitTermination()
基于发布的代码,我隔离了列“ temperature_value”,然后对其进行矢量化(使用VectorAssembler)以创建矢量类型的“温度”列。
我想要的是将“ Summarizer”功能的结果输出到我的控制台。这就是为什么我对outputMode使用“ append”并设置“ console”格式的原因。但是我遇到了这个错误: pyspark.sql.utils.AnalysisException:'当不带水印的流式DataFrames / DataSet上存在流式聚合时,不支持追加输出模式。因此,我使用了“ withWatermark”函数,但是outputMode“ append”仍然出现相同的错误。
当我尝试将outputMode更改为“ complete”时,我的终端立即终止了火花流。
即时流式终止:
我的问题:
如何使用“ withWatermark”功能将向量列“温度”的摘要统计信息输出到控制台?
还有其他方法可以为我的数据框的自定义列计算描述统计信息吗?
我先感谢您的帮助。
编辑(20.12.2019)
已经给出并接受了解决方案。虽然,现在出现以下错误:
答案 0 :(得分:1)
当我尝试将outputMode更改为“ complete”时,我的终端立即终止了火花流。
您所有的流查询都已启动并正在运行,但是pyspark应用程序(的主线程)甚至没有给它们提供长时间运行的机会(因为它不会由于#.awaitTermination()
而终止)。
您应该使用StreamingQuery.awaitTermination()
来阻止pyspark应用程序的主线程,例如query_1.awaitTermination()