我使用以下代码使用keras构建MLP。
model_relu = Sequential()
model_relu.add(Dense(256, activation='relu', input_shape=(input_dim,), kernel_initializer=RandomNormal(mean=0.0, stddev=0.062, seed=None)))
model_relu.add(Dense(128, activation='relu', kernel_initializer = RandomNormal(mean=0.0, stddev=0.125, seed=None)) )
model_relu.add(Dense(64, activation='relu', kernel_initializer = RandomNormal(mean=0.0, stddev=0.07, seed=None)) )
model_relu.add(Dense(output_dim, activation='softmax'))
model_relu.summary()
摘要是
Model: "sequential_19"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_49 (Dense) (None, 256) 200960
_________________________________________________________________
dense_50 (Dense) (None, 128) 32896
_________________________________________________________________
dense_51 (Dense) (None, 64) 8256
_________________________________________________________________
dense_52 (Dense) (None, 10) 650
我想要这个MLP有多少个隐藏层。我们应该将此3称为隐藏层数还是4个隐藏层。 总层数是5(输入+ 3隐藏+ 1输出(softmax)吗?
答案 0 :(得分:1)
您有1个input layer
带有256个神经元,有2个hidden layers
带有128和64个神经元,最后您有1个output layer
带有10个神经元。