装饰器传输变量'insurance_mode'时遇到问题。我会通过以下装饰器声明来做到这一点:
@execute_complete_reservation(True)
def test_booking_gta_object(self):
self.test_select_gta_object()
但不幸的是,这句话不起作用。也许有更好的方法来解决这个问题。
def execute_complete_reservation(test_case,insurance_mode):
def inner_function(self,*args,**kwargs):
self.test_create_qsf_query()
test_case(self,*args,**kwargs)
self.test_select_room_option()
if insurance_mode:
self.test_accept_insurance_crosseling()
else:
self.test_decline_insurance_crosseling()
self.test_configure_pax_details()
self.test_configure_payer_details
return inner_function
答案 0 :(得分:562)
你的意思是def test_booking_gta_object
,对吧?无论如何,带参数的装饰器的语法有点不同 - 带参数的装饰器应该返回一个函数,它将获取一个函数并返回另一个函数。所以它应该真正返回一个普通的装饰器。有点混乱,对吧?我的意思是:
def decorator_factory(argument):
def decorator(function):
def wrapper(*args, **kwargs):
funny_stuff()
something_with_argument(argument)
result = function(*args, **kwargs)
more_funny_stuff()
return result
return wrapper
return decorator
Here你可以阅读更多关于这个主题的内容 - 也可以使用可调用的对象实现这一点,并在那里解释。
答案 1 :(得分:250)
编辑:要深入了解装饰者的心理模型,请查看this精彩的Pycon Talk。非常值得30分钟。
考虑带参数的装饰器的一种方法是
@decorator
def foo(*args, **kwargs):
pass
转换为
foo = decorator(foo)
所以如果装饰者有参数,
@decorator_with_args(arg)
def foo(*args, **kwargs):
pass
转换为
foo = decorator_with_args(arg)(foo)
decorator_with_args
是一个接受自定义参数并返回实际装饰器(将应用于装饰函数)的函数。
我使用partials的简单技巧使我的装饰器变得容易
from functools import partial
def _pseudo_decor(fun, argument):
def ret_fun(*args, **kwargs):
#do stuff here, for eg.
print ("decorator arg is %s" % str(argument))
return fun(*args, **kwargs)
return ret_fun
real_decorator = partial(_pseudo_decor, argument=arg)
@real_decorator
def foo(*args, **kwargs):
pass
更新
以上,foo
变为real_decorator(foo)
装饰函数的一个作用是在装饰器声明时覆盖名称foo
。 foo
被覆盖""通过real_decorator
返回的任何内容。在这种情况下,一个新的功能对象。
覆盖了所有foo
个元数据,尤其是文档字符串和函数名称。
>>> print(foo)
<function _pseudo_decor.<locals>.ret_fun at 0x10666a2f0>
functools.wraps为我们提供了一种方便的方法来提升&#34;返回函数的docstring和name。
from functools import partial, wraps
def _pseudo_decor(fun, argument):
# magic sauce to lift the name and doc of the function
@wraps(fun)
def ret_fun(*args, **kwargs):
#do stuff here, for eg.
print ("decorator arg is %s" % str(argument))
return fun(*args, **kwargs)
return ret_fun
real_decorator = partial(_pseudo_decor, argument=arg)
@real_decorator
def bar(*args, **kwargs):
pass
>>> print(bar)
<function __main__.bar(*args, **kwargs)>
答案 2 :(得分:71)
我想展示一个恕我直言非常优雅的想法。 t.dubrownik提出的解决方案显示了一个始终相同的模式:无论装饰器做什么,都需要三层包装器。
所以我认为这是一个meta-decorator的工作,也就是装饰器的装饰器。由于装饰器是一个函数,它实际上作为带有参数的常规装饰器:
def parametrized(dec):
def layer(*args, **kwargs):
def repl(f):
return dec(f, *args, **kwargs)
return repl
return layer
这可以应用于常规装饰器以添加参数。例如,假设我们有一个装饰器,它将函数的结果加倍:
def double(f):
def aux(*xs, **kws):
return 2 * f(*xs, **kws)
return aux
@double
def function(a):
return 10 + a
print function(3) # Prints 26, namely 2 * (10 + 3)
使用@parametrized
,我们可以构建一个具有参数
@multiply
装饰器
@parametrized
def multiply(f, n):
def aux(*xs, **kws):
return n * f(*xs, **kws)
return aux
@multiply(2)
def function(a):
return 10 + a
print function(3) # Prints 26
@multiply(3)
def function_again(a):
return 10 + a
print function(3) # Keeps printing 26
print function_again(3) # Prints 39, namely 3 * (10 + 3)
传统上,参数化装饰器的第一个参数是函数,而其余参数将对应于参数化装饰器的参数。
一个有趣的用法示例可能是类型安全的断言装饰器:
import itertools as it
@parametrized
def types(f, *types):
def rep(*args):
for a, t, n in zip(args, types, it.count()):
if type(a) is not t:
raise TypeError('Value %d has not type %s. %s instead' %
(n, t, type(a))
)
return f(*args)
return rep
@types(str, int) # arg1 is str, arg2 is int
def string_multiply(text, times):
return text * times
print(string_multiply('hello', 3)) # Prints hellohellohello
print(string_multiply(3, 3)) # Fails miserably with TypeError
最后一点:这里我没有使用functools.wraps
作为包装函数,但我建议你一直使用它。
答案 3 :(得分:57)
以下是t.dubrownik's answer的略微修改版本。为什么呢?
因此请使用@functools.wraps()
:
from functools import wraps
def decorator(argument):
def real_decorator(function):
@wraps(function)
def wrapper(*args, **kwargs):
funny_stuff()
something_with_argument(argument)
retval = function(*args, **kwargs)
more_funny_stuff()
return retval
return wrapper
return real_decorator
答案 4 :(得分:35)
我认为你的问题是将参数传递给你的装饰者。这有点棘手,并不简单。
以下是如何执行此操作的示例:
class MyDec(object):
def __init__(self,flag):
self.flag = flag
def __call__(self, original_func):
decorator_self = self
def wrappee( *args, **kwargs):
print 'in decorator before wrapee with flag ',decorator_self.flag
original_func(*args,**kwargs)
print 'in decorator after wrapee with flag ',decorator_self.flag
return wrappee
@MyDec('foo de fa fa')
def bar(a,b,c):
print 'in bar',a,b,c
bar('x','y','z')
打印:
in decorator before wrapee with flag foo de fa fa
in bar x y z
in decorator after wrapee with flag foo de fa fa
答案 5 :(得分:12)
编写一个带有和不带有参数的装饰器是一个挑战,因为Python在这两种情况下期望完全不同的行为!许多答案都试图解决此问题,以下是@ norok2对答案的改进。具体来说,此变体消除了locals()
的使用。
以下与@ norok2给出的示例相同:
import functools
def multiplying(f_py=None, factor=1):
assert callable(f_py) or f_py is None
def _decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
return factor * func(*args, **kwargs)
return wrapper
return _decorator(f_py) if callable(f_py) else _decorator
@multiplying
def summing(x): return sum(x)
print(summing(range(10)))
# 45
@multiplying()
def summing(x): return sum(x)
print(summing(range(10)))
# 45
@multiplying(factor=10)
def summing(x): return sum(x)
print(summing(range(10)))
# 450
问题在于,用户必须提供键,值对参数而不是位置参数,并且保留第一个参数。
答案 6 :(得分:7)
这是用于函数修饰器的模板,如果不提供任何参数,则不需要()
:
import functools
def decorator(x_or_func=None, *decorator_args, **decorator_kws):
def _decorator(func):
@functools.wraps(func)
def wrapper(*args, **kws):
if 'x_or_func' not in locals() \
or callable(x_or_func) \
or x_or_func is None:
x = ... # <-- default `x` value
else:
x = x_or_func
return func(*args, **kws)
return wrapper
return _decorator(x_or_func) if callable(x_or_func) else _decorator
下面是一个示例:
def multiplying(factor_or_func=None):
def _decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
if 'factor_or_func' not in locals() \
or callable(factor_or_func) \
or factor_or_func is None:
factor = 1
else:
factor = factor_or_func
return factor * func(*args, **kwargs)
return wrapper
return _decorator(factor_or_func) if callable(factor_or_func) else _decorator
@multiplying
def summing(x): return sum(x)
print(summing(range(10)))
# 45
@multiplying()
def summing(x): return sum(x)
print(summing(range(10)))
# 45
@multiplying(10)
def summing(x): return sum(x)
print(summing(range(10)))
# 450
答案 7 :(得分:4)
def decorator_function(original_function):
def wrapper_function(*args, **kwargs):
print('Executed Before', original_function.__name__)
result = original_function(*args, **kwargs)
print('Executed After', original_function.__name__, '\n')
return result
return wrapper_function
@decorator_function
def display_info(name, age):
print('display_info ran with arguments ({}, {})'.format(name, age))
display_info('Mr Bean', 66)
display_info('MC Jordan', 57)
输出:
Executed Before display_info
display_info ran with arguments (Mr Bean, 66)
Executed After display_info
Executed Before display_info
display_info ran with arguments (MC Jordan, 57)
Executed After display_info
那么现在让我们继续让我们的装饰器函数接受参数。
例如,假设我想要包装器中所有这些打印语句的可自定义前缀。
现在这将是装饰器参数的一个很好的候选。
我们传入的参数就是那个前缀。现在为了做到这一点,我们只是要为我们的装饰器添加另一个外层,所以我将把这个函数称为前缀装饰器。
def prefix_decorator(prefix):
def decorator_function(original_function):
def wrapper_function(*args, **kwargs):
print(prefix, 'Executed Before', original_function.__name__)
result = original_function(*args, **kwargs)
print(prefix, 'Executed After', original_function.__name__, '\n')
return result
return wrapper_function
return decorator_function
@prefix_decorator('LOG:')
def display_info(name, age):
print('display_info ran with arguments ({}, {})'.format(name, age))
display_info('Mr Bean', 66)
display_info('MC Jordan', 57)
输出:
LOG: Executed Before display_info
display_info ran with arguments (Mr Bean, 66)
LOG: Executed After display_info
LOG: Executed Before display_info
display_info ran with arguments (MC Jordan, 57)
LOG: Executed After display_info
LOG:
前缀,您可以随时更改它。答案 8 :(得分:4)
就这么简单
def real_decorator(any_number_of_arguments):
def pseudo_decorator(function_to_be_decorated):
def real_wrapper(function_arguments):
print(function_arguments)
result = function_to_be_decorated(any_number_of_arguments)
return result
return real_wrapper
return pseudo_decorator
现在
@real_decorator(any_number_of_arguments)
def some_function(function_arguments):
return "Any"
答案 9 :(得分:3)
def decorator(argument):
def real_decorator(function):
def wrapper(*args):
for arg in args:
assert type(arg)==int,f'{arg} is not an interger'
result = function(*args)
result = result*argument
return result
return wrapper
return real_decorator
装饰器的用途
@decorator(2)
def adder(*args):
sum=0
for i in args:
sum+=i
return sum
然后
adder(2,3)
产生
10
但是
adder('hi',3)
产生
---------------------------------------------------------------------------
AssertionError Traceback (most recent call last)
<ipython-input-143-242a8feb1cc4> in <module>
----> 1 adder('hi',3)
<ipython-input-140-d3420c248ebd> in wrapper(*args)
3 def wrapper(*args):
4 for arg in args:
----> 5 assert type(arg)==int,f'{arg} is not an interger'
6 result = function(*args)
7 result = result*argument
AssertionError: hi is not an interger
答案 10 :(得分:2)
上面的好答案。这也说明了@wraps
,它从原始函数中获取doc字符串和函数名,并将其应用于新的包装版本:
from functools import wraps
def decorator_func_with_args(arg1, arg2):
def decorator(f):
@wraps(f)
def wrapper(*args, **kwargs):
print("Before orginal function with decorator args:", arg1, arg2)
result = f(*args, **kwargs)
print("Ran after the orginal function")
return result
return wrapper
return decorator
@decorator_func_with_args("foo", "bar")
def hello(name):
"""A function which prints a greeting to the name provided.
"""
print('hello ', name)
return 42
print("Starting script..")
x = hello('Bob')
print("The value of x is:", x)
print("The wrapped functions docstring is:", hello.__doc__)
print("The wrapped functions name is:", hello.__name__)
打印:
Starting script..
Before orginal function with decorator args: foo bar
hello Bob
Ran after the orginal function
The value of x is: 42
The wrapped functions docstring is: A function which prints a greeting to the name provided.
The wrapped functions name is: hello
答案 11 :(得分:2)
在我的实例中,我决定通过单行lambda来解决这个问题,以创建一个新的装饰器函数:
def finished_message(function, message="Finished!"):
def wrapper(*args, **kwargs):
output = function(*args,**kwargs)
print(message)
return output
return wrapper
@finished_message
def func():
pass
my_finished_message = lambda f: finished_message(f, "All Done!")
@my_finished_message
def my_func():
pass
if __name__ == '__main__':
func()
my_func()
执行时,会打印:
Finished!
All Done!
也许不像其他解决方案那样可扩展,但为我工作。
答案 12 :(得分:1)
众所周知,以下两段代码几乎等效:
@dec
def foo():
pass foo = dec(foo)
############################################
foo = dec(foo)
一个常见的错误是认为@
只是隐藏了最左边的参数。
@dec(1, 2, 3)
def foo():
pass
###########################################
foo = dec(foo, 1, 2, 3)
如果以上是@
的工作方式,则编写装饰器会容易得多。不幸的是,这不是事情的完成方式。
考虑装饰器Wait
程序执行几秒钟。
如果您未通过等待时间
那么默认值为1秒。
用例如下所示。
##################################################
@Wait
def print_something(something):
print(something)
##################################################
@Wait(3)
def print_something_else(something_else):
print(something_else)
##################################################
@Wait(delay=3)
def print_something_else(something_else):
print(something_else)
如果Wait
有一个参数,例如@Wait(3)
,则调用Wait(3)
在发生其他任何事情之前 执行。
也就是说,以下两段代码是等效的
@Wait(3)
def print_something_else(something_else):
print(something_else)
###############################################
return_value = Wait(3)
@return_value
def print_something_else(something_else):
print(something_else)
这是一个问题。
if `Wait` has no arguments:
`Wait` is the decorator.
else: # `Wait` receives arguments
`Wait` is not the decorator itself.
Instead, `Wait` ***returns*** the decorator
一种解决方案如下所示:
让我们从创建以下类DelayedDecorator
开始:
class DelayedDecorator:
def __init__(i, cls, *args, **kwargs):
print("Delayed Decorator __init__", cls, args, kwargs)
i._cls = cls
i._args = args
i._kwargs = kwargs
def __call__(i, func):
print("Delayed Decorator __call__", func)
if not (callable(func)):
import io
with io.StringIO() as ss:
print(
"If only one input, input must be callable",
"Instead, received:",
repr(func),
sep="\n",
file=ss
)
msg = ss.getvalue()
raise TypeError(msg)
return i._cls(func, *i._args, **i._kwargs)
现在我们可以编写如下内容:
dec = DelayedDecorator(Wait, delay=4)
@dec
def delayed_print(something):
print(something)
请注意:
dec
不接受多个参数。 dec
仅接受要包装的功能。
进口检查 类PolyArgDecoratorMeta(type): def call (请等待,* args,** kwargs): 尝试: arg_count = len(args) 如果(arg_count == 1): 如果可调用(参数[0]): 超类= inspect.getmro(PolyArgDecoratorMeta)[1] r =超类。调用(等待,参数[0]) 其他: r = DelayedDecorator(等待,* args,** kwargs) 其他: r = DelayedDecorator(等待,* args,** kwargs) 最后: 通过 返回r
导入时间 类Wait(metaclass = PolyArgDecoratorMeta): def init (i,func,delay = 2): i._func =函数 i._delay =延迟
def __call__(i, *args, **kwargs):
time.sleep(i._delay)
r = i._func(*args, **kwargs)
return r
以下两段代码是等效的:
@Wait
def print_something(something):
print (something)
##################################################
def print_something(something):
print(something)
print_something = Wait(print_something)
我们可以非常缓慢地将"something"
打印到控制台,如下所示:
print_something("something")
#################################################
@Wait(delay=1)
def print_something_else(something_else):
print(something_else)
##################################################
def print_something_else(something_else):
print(something_else)
dd = DelayedDecorator(Wait, delay=1)
print_something_else = dd(print_something_else)
##################################################
print_something_else("something")
它可能看起来像很多代码,但是您不必每次都编写类DelayedDecorator
和PolyArgDecoratorMeta
。您唯一需要亲自编写如下代码的代码,该代码相当短:
from PolyArgDecoratorMeta import PolyArgDecoratorMeta
import time
class Wait(metaclass=PolyArgDecoratorMeta):
def __init__(i, func, delay = 2):
i._func = func
i._delay = delay
def __call__(i, *args, **kwargs):
time.sleep(i._delay)
r = i._func(*args, **kwargs)
return r
答案 13 :(得分:1)
这是一个使用带参数的装饰器的 Flask 示例。假设我们有一个路由“/user/name”,我们想映射到他的主页。
def matchR(dirPath):
def decorator(func):
def wrapper(msg):
if dirPath[0:6] == '/user/':
print(f"User route '{dirPath}' match, calling func {func}")
name = dirPath[6:]
return func(msg2=name, msg3=msg)
else:
print(f"Input dirPath '{dirPath}' does not match route '/user/'")
return
return wrapper
return decorator
#@matchR('/Morgan_Hills')
@matchR('/user/Morgan_Hills')
def home(**kwMsgs):
for arg in kwMsgs:
if arg == 'msg2':
print(f"In home({arg}): Hello {kwMsgs[arg]}, welcome home!")
if arg == 'msg3':
print(f"In home({arg}): {kwMsgs[arg]}")
home('This is your profile rendered as in index.html.')
输出:
User route '/user/Morgan_Hills' match, calling func <function home at 0x000001DD5FDCD310>
In home(msg2): Hello Morgan_Hills, welcome home!
In home(msg3): This is your profile rendered as in index.html.
答案 14 :(得分:0)
定义此“ decoratorize函数”以生成自定义的装饰器函数:
def decoratorize(FUN, **kw):
def foo(*args, **kws):
return FUN(*args, **kws, **kw)
return foo
以这种方式使用它:
@decoratorize(FUN, arg1 = , arg2 = , ...)
def bar(...):
...
答案 15 :(得分:0)
是一个可以通过多种方式调用的装饰器(在python3.7中测试过):
import functools
def my_decorator(*args_or_func, **decorator_kwargs):
def _decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
if not args_or_func or callable(args_or_func[0]):
# Here you can set default values for positional arguments
decorator_args = ()
else:
decorator_args = args_or_func
print(
"Available inside the wrapper:",
decorator_args, decorator_kwargs
)
# ...
result = func(*args, **kwargs)
# ...
return result
return wrapper
return _decorator(args_or_func[0]) \
if args_or_func and callable(args_or_func[0]) else _decorator
@my_decorator
def func_1(arg): print(arg)
func_1("test")
# Available inside the wrapper: () {}
# test
@my_decorator()
def func_2(arg): print(arg)
func_2("test")
# Available inside the wrapper: () {}
# test
@my_decorator("any arg")
def func_3(arg): print(arg)
func_3("test")
# Available inside the wrapper: ('any arg',) {}
# test
@my_decorator("arg_1", 2, [3, 4, 5], kwarg_1=1, kwarg_2="2")
def func_4(arg): print(arg)
func_4("test")
# Available inside the wrapper: ('arg_1', 2, [3, 4, 5]) {'kwarg_1': 1, 'kwarg_2': '2'}
# test
感谢用户 @norok2 - https://stackoverflow.com/a/57268935/5353484
UPD 装饰器,用于根据注释验证类的函数和方法的参数和/或结果。可用于同步或异步版本:https://github.com/EvgeniyBurdin/valdec
答案 16 :(得分:-1)
如果函数和装饰器都必须接受参数,则可以采用以下方法。
例如,有一个名为decorator1
的装饰器,它接受一个参数
@decorator1(5)
def func1(arg1, arg2):
print (arg1, arg2)
func1(1, 2)
现在,如果decorator1
参数必须是动态的,或者在调用函数时已传递,则
def func1(arg1, arg2):
print (arg1, arg2)
a = 1
b = 2
seconds = 10
decorator1(seconds)(func1)(a, b)
在上面的代码中
seconds
是decorator1
的参数a, b
是func1