RuntimeError:模块必须在设备cuda:1(device_ids [0])上具有其参数和缓冲区,但在设备cuda:2上找到其中一个参数和缓冲区

时间:2019-12-09 13:05:52

标签: parallel-processing pytorch

我有4个GPU(0、1、2、3),我想在GPU 2上运行一个Jupyter笔记本,在GPU 0上运行另一个,因此,在执行之后,

 export CUDA_VISIBLE_DEVICES=0,1,2,3

对于我使用的GPU 2笔记本电脑

device = torch.device( f'cuda:{2}' if torch.cuda.is_available() else 'cpu')
device, torch.cuda.device_count(), torch.cuda.is_available(), torch.cuda.current_device(), torch.cuda.get_device_properties(1)

在创建新模型或加载模型后,

model = nn.DataParallel( model, device_ids = [ 0, 1, 2, 3])
model = model.to( device)

然后,当我开始训练模型时,我得到了

RuntimeError                              Traceback (most recent call last)
<ipython-input-18-849ffcb53e16> in <module>
 46             with torch.set_grad_enabled( phase == 'train'):
 47                 # [N, Nclass, H, W]
 ---> 48                 prediction = model(X)
 49                 # print( prediction.shape, y.shape)
 50                 loss_matrix = criterion( prediction, y)

~/.local/lib/python3.6/site-packages/torch/nn/modules/module.py in __call__(self, *input, **kwargs)
491             result = self._slow_forward(*input, **kwargs)
492         else:
--> 493             result = self.forward(*input, **kwargs)
494         for hook in self._forward_hooks.values():
495             hook_result = hook(self, input, result)

~/.local/lib/python3.6/site-packages/torch/nn/parallel/data_parallel.py in forward(self, *inputs, **kwargs)
144                 raise RuntimeError("module must have its parameters and buffers "
145                                    "on device {} (device_ids[0]) but found one of "
--> 146                                    "them on device: {}".format(self.src_device_obj, t.device))
147 
148         inputs, kwargs = self.scatter(inputs, kwargs, self.device_ids)

RuntimeError: module must have its parameters and buffers on device cuda:0 (device_ids[0]) but found one of them on device: cuda:2

3 个答案:

答案 0 :(得分:2)

DataParallel要求在device_ids列表中的第一个设备上提供每个输入张量

在将其散布到其他GPU之前,它基本上是将该设备用作暂存区域,并且该设备是收集最终输出然后从正向返回的设备。如果要将设备2用作主要设备,则只需将其放在列表的开头,如下所示:

model = nn.DataParallel(model, device_ids = [2, 0, 1, 3])
model.to(f'cuda:{model.device_ids[0]}')

此后,提供给模型的所有张量也应在第一个设备上。

x = ... # input tensor
x = x.to(f'cuda:{model.device_ids[0]}')
y = model(x)

答案 1 :(得分:0)

对我来说,以下作品也是如此:

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if torch.cuda.device_count() > 1:
    print("Let's use", torch.cuda.device_count(), "GPUs!")
    network = nn.DataParallel(network)

network.to(device)
tnsr = tnsr.to(device)

答案 2 :(得分:0)

使用火炬时发生此错误,模型和数据均不在 cuda 上:

尝试一些这样的代码在 cuda 上进行建模和数据集

model = model.toDevice(‘cuda’)
images = images.toDevice(‘cuda’)