我正在学习PYSPARK
,遇到无法解决的问题。我按照此视频操作,从PYSPARK
文档中复制代码以加载数据以进行线性回归。我从文档中获得的代码是spark.read.format('libsvm')。load('file.txt')。我在此之前创建了一个火花数据框。当我在Jupyter
笔记本中运行此代码时,它一直在给我一些Java错误,而该视频中的那个家伙所做的事情与我完全相同,而他没有遇到此错误。有人可以帮我解决这个问题吗?
非常感谢!
答案 0 :(得分:0)
您可以使用此自定义函数读取libsvm文件。
from pyspark.sql import Row
from pyspark.ml.linalg import SparseVector
def read_libsvm(filepath, spark_session):
'''
A utility function that takes in a libsvm file and turn it to a pyspark dataframe.
Args:
filepath (str): The file path to the data file.
spark_session (object): The SparkSession object to create dataframe.
Returns:
A pyspark dataframe that contains the data loaded.
'''
with open(filepath, 'r') as f:
raw_data = [x.split() for x in f.readlines()]
outcome = [int(x[0]) for x in raw_data]
index_value_dict = list()
for row in raw_data:
index_value_dict.append(dict([(int(x.split(':')[0]), float(x.split(':')[1]))
for x in row[1:]]))
max_idx = max([max(x.keys()) for x in index_value_dict])
rows = [
Row(
label=outcome[i],
feat_vector=SparseVector(max_idx + 1, index_value_dict[i])
)
for i in range(len(index_value_dict))
]
df = spark_session.createDataFrame(rows)
return df
用法:
my_data = read_libsvm(filepath="sample_libsvm_data.txt", spark_session=spark)