我有一个像这样的数据框:
我正在尝试按照严重性值以相同的顺序,用严重性值用零填充事件行数组:
**Unique severity values order**: ['INFO' 'CRITICAL' 'MAJOR' 'MINOR' 'OK' 'UNKNOWN' 'WARNING'
'itsm_incident_status=' 'itsm_incident_status=Assigned'
'itsm_incident_status=In Progress' 'itsm_incident_status=Pending'
'itsm_incident_status=Resolved']
Expected outcome of Events array for labels :
attribut : [INFO] [1813,0,0,0,0,0,0,0,0,0,0,0]
baseline : [3513,10,62,317,126,42,20,6,1,3,2,14]
cmdb : [OK] [0,0,0,0,1804,0,0,0,0,0,0,0]
and so on, so that it can accurately map with Severity values per label in the charts :
I tried below code but it's not working accurately :
def pad_event_count(count):
print('count ',count)
for index,s in enumerate(y):
print('current s ',s)
row_str = "".join(parsed.Severity[index])
print('Severity ',row_str)
if row_str != s:
print('not equal')
count.append(0)
else:
print('equal appending count')
#count.append(count)
parsed.events.apply(lambda x : pad_event_count(x))