initial_month = datetime.strptime('01-2018', '%m-%Y')
final_month = datetime.strptime('12-2020', '%m-%Y')
ppl_initial_comms = ppc_initial_comms = 6174
initial_leadpcpm = 4
ppl_price = 40
ppc_price = 400
ppl_new_comms = ppc_new_comms = 0
growth_years = ['2018','2019','2020']
leadpcpm_rate_dict = {}
ppl_rate_dict = {}
ppc_rate_dict = {}
ppl_cumul_rev_dict = {}
ppc_cumul_rev_dict = {}
#For Loop to calculate yearly MoM rates
for year in growth_years:
if year == '2018':
leadpcpm_rate_dict[year] = 5
ppl_rate_dict[year] = 6
ppc_rate_dict[year] = 0.9 * ppl_rate_dict[year]
elif year == '2019':
leadpcpm_rate_dict[year] = 4
ppl_rate_dict[year] = 4
ppc_rate_dict[year] = 0.9 * ppl_rate_dict[year]
elif year == '2020':
leadpcpm_rate_dict[year] = 1
ppl_rate_dict[year] = 2
ppc_rate_dict[year] = 0.9 * ppl_rate_dict[year]
#While loop to calculate MoM revenue growth over 3 years
while(initial_month != final_month+relativedelta(months=1)):
initial_year = str(initial_month.year)
if initial_year in growth_years:
ppl_new_leadpcpm = initial_leadpcpm + ((initial_leadpcpm*leadpcpm_rate_dict[initial_year]) / 100)
initial_leadpcpm = ppl_new_leadpcpm
ppl_new_comms = ppl_initial_comms + ((ppl_initial_comms*ppl_rate_dict[initial_year]) / 100)
ppl_initial_comms = ppl_new_comms
ppl_cumul_rev = ppl_new_comms * ppl_new_leadpcpm * ppl_price
ppl_cumul_rev_dict[initial_month] = ppl_cumul_rev
ppc_new_comms = ppc_initial_comms + ((ppc_initial_comms*ppc_rate_dict[initial_year]) / 100)
ppc_initial_comms = ppc_new_comms
ppc_cumul_rev = ppc_new_comms * ppc_price
ppc_cumul_rev_dict[initial_month] = ppc_cumul_rev
initial_month += relativedelta(months=1)
我正在尝试使用MatPlotLib在单个折线图(时间序列)中可视化36个月ppp和ppc的连续收入总和。但是我不确定如何将ppl_cumul_rev_dict
和ppc_cumul_rev_dict
的结果解析为这样的数据框:
Year PPLRevenue PPCRevenue
0 Jan 2018 1234 5678
1 Feb 2018 9112 10019
.. .. ..
35 Dec 2020 1000000 1500000
我尝试创建2个ppl和ppc收入字典,但是我不知道如何将它们组合成一个数据框以输入plt.plot
答案 0 :(得分:2)
重写您构建字典的方式可能会更好,但是,鉴于您提供给我们的代码以及ppl_cumul_rev_dict
和ppc_cumul_rev_dict
的内容:
df1 = pd.DataFrame(np.array([[k,v] for k,v in ppc_cumul_rev_dict.items()]), columns=['Date','PPC']).set_index('Date')
df2 = pd.DataFrame(np.array([[k,v] for k,v in ppl_cumul_rev_dict.items()]), columns=['Date','PPL']).set_index('Date')
df = pd.concat([df1,df2], axis=1)
df.plot()
答案 1 :(得分:2)
您只需将字典转换为pandas
系列,然后创建一个DataFrame。
import pandas as pd
ppc_series = pd.Series(ppc_cumul_rev_dict)
ppl_series = pd.Series(ppl_cumul_rev_dict)
df = pd.DataFrame(data={'ppc': ppc_series, 'ppl': ppl_series})