我基于this notebook训练了BERT模型。
我以这种方式将其导出为tf SavedModel:
def serving_input_fn():
receiver_tensors = {
"input_ids": tf.placeholder(dtype=tf.int32, shape=[1, MAX_SEQ_LENGTH])
}
features = {
"input_ids": receiver_tensors['input_ids'],
"input_mask": 1 - tf.cast(tf.equal(receiver_tensors['input_ids'], 0), dtype=tf.int32),
"segment_ids": tf.zeros(dtype=tf.int32, shape=[1, MAX_SEQ_LENGTH]),
"label_ids": tf.placeholder(tf.int32, [None], name='label_ids')
}
return tf.estimator.export.ServingInputReceiver(features, receiver_tensors)
estimator._export_to_tpu = False
estimator.export_saved_model("export", serving_input_fn)
然后,如果我尝试在本地使用保存的模型,它将起作用:
from tensorflow.contrib import predictor
predict_fn = predictor.from_saved_model("export/1575241274/")
print(predict_fn({
"input_ids": [[101, 10468, 99304, 11496, 171, 112, 10176, 22873, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
}))
# {'probabilities': array([[-0.01023898, -4.5866656 ]], dtype=float32), 'labels': 0}
然后,我将SavedModel上传到存储桶,并通过以下方式在gcloud上创建了模型和模型版本:
gcloud alpha ai-platform versions create v1gpu --model [...] --origin=[...] --python-version=3.5 --runtime-version=1.14 --accelerator=^:^count=1:type=nvidia-tesla-k80 --machine-type n1-highcpu-4
没有问题,模型已部署并在控制台中显示为正常工作。
但是,如果我尝试获得预测,例如:
import googleapiclient.discovery
service = googleapiclient.discovery.build('ml', 'v1')
name = 'projects/[project_name]/models/[model_name]/versions/v1gpu'
response = service.projects().predict(
name=name,
body={'instances': [{
"input_ids": [[101, 10468, 99304, 11496, 171, 112, 10176, 22873, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
}]}
).execute()
print(response["predictions"])
我得到的只是以下错误:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/local/lib/python3.6/dist-packages/googleapiclient/_helpers.py", line 130, in positional_wrapper
return wrapped(*args, **kwargs)
File "/usr/local/lib/python3.6/dist-packages/googleapiclient/http.py", line 851, in execute
raise HttpError(resp, content, uri=self.uri)
googleapiclient.errors.HttpError: <HttpError 400 when requesting https://ml.googleapis.com/v1/projects/[project_name]/models/[model_name]/versions/v1gpu:predict?alt=json returned "Bad Request">
如果我使用“使用示例输入数据测试模型”功能从gcloud控制台测试模型,则会收到相同的错误。
编辑:
Saved_model具有一个标记集“ serve”和一个特征符定义“ serving_default”。
“ saved_model_cli show --dir 1575241274 / --tag_set服务--signature_def服务默认值”的输出:
The given SavedModel SignatureDef contains the following input(s):
inputs['input_ids'] tensor_info:
dtype: DT_INT32
shape: (1, 128)
name: Placeholder:0
The given SavedModel SignatureDef contains the following output(s):
outputs['labels'] tensor_info:
dtype: DT_INT32
shape: ()
name: loss/Squeeze:0
outputs['probabilities'] tensor_info:
dtype: DT_FLOAT
shape: (1, 2)
name: loss/LogSoftmax:0
Method name is: tensorflow/serving/predict
答案 0 :(得分:0)
发送到API的请求的正文具有以下形式:
{"instances": [<instance 1>, <instance 2>, ...]}
根据文档中的说明,我们需要以下内容:
{
"instances": [
<object>
...
]
}
在这种情况下,您有:
{
"instances": [
{
"input_ids":
[ <object> ]
}
...
]
}
您需要将input_id替换为实例:
{
"instances":
[
[101, 10468, 99304, 11496, 171, 112, 10176, 22873, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
]
}
注意。如果可以显示saved_model_cli
会很好。
另外,gcloud local predict
命令也是测试的不错选择。
答案 1 :(得分:0)
这取决于模型的签名。就我而言,我具有以下签名(仅保留输入部分):
The given SavedModel SignatureDef contains the following input(s):
inputs['attention_mask'] tensor_info:
dtype: DT_INT32
shape: (-1, 128)
name: serving_default_attention_mask:0
inputs['input_ids'] tensor_info:
dtype: DT_INT32
shape: (-1, 128)
name: serving_default_input_ids:0
inputs['token_type_ids'] tensor_info:
dtype: DT_INT32
shape: (-1, 128)
name: serving_default_token_type_ids:0
并且我需要以以下格式(在本例中为2个示例)传递数据:
{'instances':
[
{'input_ids': [101, 143, 18267, 15470, 90395, ...],
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, .....],
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, .....]
},
{'input_ids': [101, 17664, 143, 30728, .........],
'attention_mask': [1, 1, 1, 1, 1, 1, 1, .......],
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, ....]
}
]
}
我将其与Keras
Tensorflow
2.2.0
模型一起使用
我想根据您的情况(两个示例):
{'instances':
[
{'input_ids': [101, 143, 18267, 15470, 90395, ...]},
{'input_ids': [101, 17664, 143, 30728, .........]}
]
}