当尝试建立我的数据集时,会收到“ TypeError:'set'对象不可下标”错误。
dataDir = '/content/drive/My Drive/Colab Notebooks/HW 3/' # Directory with input files
trainFile = 'q2train.csv' # Training examples
labelFile = 'q2label.csv' # Test label
validFile = 'q2valid.csv' # Valid Files
train = pd.read_csv(dataDir+trainFile)
valid = pd.read_csv(dataDir+validFile)
label = pd.read_csv(dataDir+labelFile)
data_sets = {
'train',
'label',
'valid'}
def get_data(data_set_name, test_prop=0.2, seed=2019):
"""returns data for training, testing, and data characteristics"""
data = data_sets[data_set_name]
X, y = data.data, data.target
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=test_prop,
random_state=seed)
nF = X.shape[1] # number of features
nC = len(np.unique(y)) # number of classes
nTrain, nTest = len(y_train), len(y_test)
print("\nData set: %s" %data_set_name)
print("\tNumber of features %d" %nF)
print("\tNumber of output classes = %d" %(nC))
print("\tNumber of training examples = %d" %(nTrain))
print("\tNumber of testing examples = %d" %(nTest))
return X_train, X_test, y_train, y_test, nF, nC, nTrain, nTest
for name in data_set:
X_train, X_test, y_train, y_test, nF, nC, nTrain, nTest = get_data(name)
我们将不胜感激,在此先感谢您。
答案 0 :(得分:1)
使用字典:
train = pd.read_csv(dataDir+trainFile)
valid = pd.read_csv(dataDir+validFile)
label = pd.read_csv(dataDir+labelFile)
data_sets = {
'train': train,
'label': label,
'valid': valid
}
然后data_sets[data_set_name]
将检索您想要的数据集。