我希望能够在两个大文件上执行标准差异。我有一些可以工作的东西,但它不像命令行上的diff那么快。
A = load 'A' as (line);
B = load 'B' as (line);
JOINED = join A by line full outer, B by line;
DIFF = FILTER JOINED by A::line is null or B::line is null;
DIFF2 = FOREACH DIFF GENERATE (A::line is null?B::line : A::line), (A::line is null?'REMOVED':'ADDED');
STORE DIFF2 into 'diff';
有人有更好的方法吗?
答案 0 :(得分:4)
我使用以下方法。 (我的JOIN方法非常相似,但此方法不会复制具有复制行的diff的行为)。正如前面提到过的那样,也许你只使用一个减速器作为Pig got an algorithm来调整减速器的数量为0.8?
diff
(1)工具类似,将为正确的文件返回正确数量的额外重复项diff
(1)工具不同,顺序并不重要(当UNION执行sort -u <foo.txt> | diff
sort <foo> | diff)
SET job.name 'Diff(1) Via Join'
-- Erase Outputs
rmf first_only
rmf second_only
-- Process Inputs
a = LOAD 'a.csv.lzo' USING com.twitter.elephantbird.pig.load.LzoPigStorage('\n') AS First: chararray;
b = LOAD 'b.csv.lzo' USING com.twitter.elephantbird.pig.load.LzoPigStorage('\n') AS Second: chararray;
-- Combine Data
combined = JOIN a BY First FULL OUTER, b BY Second;
-- Output Data
SPLIT combined INTO first_raw IF Second IS NULL,
second_raw IF First IS NULL;
first_only = FOREACH first_raw GENERATE First;
second_only = FOREACH second_raw GENERATE Second;
STORE first_only INTO 'first_only' USING PigStorage();
STORE second_only INTO 'second_only' USING PigStorage();
SET job.name 'Diff(1)'
-- Erase Outputs
rmf first_only
rmf second_only
-- Process Inputs
a_raw = LOAD 'a.csv.lzo' USING com.twitter.elephantbird.pig.load.LzoPigStorage('\n') AS Row: chararray;
b_raw = LOAD 'b.csv.lzo' USING com.twitter.elephantbird.pig.load.LzoPigStorage('\n') AS Row: chararray;
a_tagged = FOREACH a_raw GENERATE Row, (int)1 AS File;
b_tagged = FOREACH b_raw GENERATE Row, (int)2 AS File;
-- Combine Data
combined = UNION a_tagged, b_tagged;
c_group = GROUP combined BY Row;
-- Find Unique Lines
%declare NULL_BAG 'TOBAG(((chararray)\'place_holder\',(int)0))'
counts = FOREACH c_group {
firsts = FILTER combined BY File == 1;
seconds = FILTER combined BY File == 2;
GENERATE
FLATTEN(
(COUNT(firsts) - COUNT(seconds) == (long)0 ? $NULL_BAG :
(COUNT(firsts) - COUNT(seconds) > 0 ?
TOP((int)(COUNT(firsts) - COUNT(seconds)), 0, firsts) :
TOP((int)(COUNT(seconds) - COUNT(firsts)), 0, seconds))
)
) AS (Row, File); };
-- Output Data
SPLIT counts INTO first_only_raw IF File == 1,
second_only_raw IF File == 2;
first_only = FOREACH first_only_raw GENERATE Row;
second_only = FOREACH second_only_raw GENERATE Row;
STORE first_only INTO 'first_only' USING PigStorage();
STORE second_only INTO 'second_only' USING PigStorage();
<强>性能强>
diff
(1)只在内存中运行,而Hadoop利用流式磁盘。