我正在尝试绘制这样的情节
使用matplotlib。
目前我有这个情节:
使用以下代码生成的:
import matplotlib.pyplot as plt
import matplotlib as mpl
import pandas as pd
width = 0.4
mpl.rcParams.update({'font.size':15})
mpl.rcParams.update({'legend.columnspacing':0.5})
##############################################################
# BEGIN: Prepare data #
##############################################################
energy_cm = 1550835.86856494
energy_fm = 1456129.29966378
energy_cm_trad = 1393026.50949191
energy_fm_trad = 1314814.95236864
energy_cm_hw = 1200000
energy_fm_hw = 1100000
data_energy = { 'Algorithm' : ['Algorithm 1', 'Algorithm 2'],
'SW' : [energy_cm, energy_fm],
'HW' : [energy_cm_hw, energy_fm_hw],
'Trad' : [energy_cm_trad, energy_fm_trad]
}
df_energy = pd.DataFrame(data_energy)
##############################################################
# END: Prepare data #
##############################################################
##############################################################
# BEGIN: Split the bars into two halves #
##############################################################
fig, (ax, ax2) = plt.subplots(2, 1, sharex=True)
df_energy[['Algorithm', 'SW', 'Trad',
'HW']].set_index('Algorithm').plot(kind='bar', legend=True,
width=width, rot=0,
ax=ax,
color=('sandybrown','rosybrown',
'goldenrod','indianred','tomato','r'))
df_energy[['Algorithm', 'SW', 'Trad',
'HW']].set_index('Algorithm').plot(kind='bar',
legend=False,
width=width, rot=0,
ax=ax2,
color=('sandybrown','rosybrown',
'goldenrod','indianred','tomato','r'))
max_lengths = sorted(df_energy.max(axis=0).values[1:])
min_lengths = sorted(df_energy.min(axis=0).values[1:])
# zoom-in / limit the view to different portions of the data
ax.set_ylim(max_lengths[-2] * 0.8, max_lengths[-1] * 1.1) # outliers only
ax2.set_ylim(0, min_lengths[0] * 1.1) # most of the data
# hide the spines between ax and ax2
ax.spines['bottom'].set_visible(False)
ax2.spines['top'].set_visible(False)
ax.xaxis.tick_top()
ax.tick_params(labeltop='off') # don't put tick labels at the top
ax2.xaxis.tick_bottom()
d = .01 # how big to make the diagonal lines in axes coordinates
# arguments to pass to plot, just so we don't keep repeating them
kwargs = dict(transform=ax.transAxes, color='k', clip_on=False)
ax.plot((-d, +d), (-d, +d), **kwargs) # top-left diagonal
ax.plot((1 - d, 1 + d), (-d, +d), **kwargs) # top-right diagonal
kwargs.update(transform=ax2.transAxes) # switch to the bottom axes
ax2.plot((-d, +d), (1 - d, 1 + d), **kwargs) # bottom-left diagonal
ax2.plot((1 - d, 1 + d), (1 - d, 1 + d), **kwargs) # bottom-right diagonal
##############################################################
# END: Split the bars into two halves #
##############################################################
##############################################################
# BEGIN: Labels #
##############################################################
# Remove X lables from the upper half of the plot
ax.tick_params(
axis='x', # changes apply to the x-axis
which='both', # both major and minor ticks are affected
bottom=False, # ticks along the bottom edge are off
top=False, # ticks along the top edge are off
labeltop=False,
labelbottom=False) # labels along the bottom edge are off
ax.set_ylabel('Energy in nJ')
ax.set_xlabel("")
ax2.set_xlabel("")
##############################################################
# END: Labels #
##############################################################
##############################################################
# BEGIN: Scaling #
##############################################################
mf = mpl.ticker.ScalarFormatter(useMathText=True)
mf.set_powerlimits((-2,2))
ax.yaxis.set_major_formatter(mf)
ax2.yaxis.set_major_formatter(mf)
##############################################################
# END: Scaling #
##############################################################
fig.tight_layout()
plt.show()
我正在跟踪matplotlibs example code作为断轴,并且我正在使用answer to my previous question中的代码来缩放y轴上的数字。
我想:
因此结果看起来像这个问题中的拳头图像。
如何实现这三件事?感谢您提供任何帮助,即使它不能解决所有三个问题...
答案 0 :(得分:1)
fig.subplots_adjust()
更改两个轴之间的间距。ylabel
替换为fig.text()
,以使标签在图中垂直居中ax2.yaxis.get_offset_text().set_visible(False)
隐藏底轴上的指数。请注意,轴的限制选择不当,因为“ Count Min”类别中的HW条的顶部在底部和顶部轴上均可见。
完整代码:
import matplotlib.pyplot as plt
import matplotlib as mpl
import pandas as pd
width = 0.4
mpl.rcParams.update({'font.size':15})
mpl.rcParams.update({'legend.columnspacing':0.5})
# BEGIN: Prepare data
energy_cm = 1550835.86856494
energy_fm = 1456129.29966378
energy_cm_trad = 1393026.50949191
energy_fm_trad = 1314814.95236864
energy_cm_hw = 1200000
energy_fm_hw = 1100000
data_energy = { 'Algorithm' : ['Algorithm 1', 'Algorithm 2'],
'SW' : [energy_cm, energy_fm],
'HW' : [energy_cm_hw, energy_fm_hw],
'Trad' : [energy_cm_trad, energy_fm_trad]
}
df_energy = pd.DataFrame(data_energy)
# BEGIN: Split the bars into two halves
fig, (ax, ax2) = plt.subplots(2, 1, sharex=True)
kw = dict(width=width, rot=0,
color=('sandybrown','rosybrown','goldenrod','indianred','tomato','r'))
df_energy[['Algorithm', 'SW', 'Trad',
'HW']].set_index('Algorithm').plot(kind='bar', legend=True, ax=ax, **kw)
df_energy[['Algorithm', 'SW', 'Trad',
'HW']].set_index('Algorithm').plot(kind='bar', legend=False, ax=ax2, **kw)
max_lengths = sorted(df_energy.max(axis=0).values[1:])
min_lengths = sorted(df_energy.min(axis=0).values[1:])
# zoom-in / limit the view to different portions of the data
ax.set_ylim(max_lengths[-2] * 0.8, max_lengths[-1] * 1.1) # outliers only
ax2.set_ylim(0, min_lengths[0] * 1.1) # most of the data
# hide the spines between ax and ax2
ax.spines['bottom'].set_visible(False)
ax2.spines['top'].set_visible(False)
ax.xaxis.tick_top()
ax.tick_params(labeltop='off') # don't put tick labels at the top
ax2.xaxis.tick_bottom()
d = .01 # how big to make the diagonal lines in axes coordinates
# arguments to pass to plot, just so we don't keep repeating them
kwargs = dict(transform=ax.transAxes, color='k', clip_on=False)
ax.plot((-d, +d), (-d, +d), **kwargs) # top-left diagonal
ax.plot((1 - d, 1 + d), (-d, +d), **kwargs) # top-right diagonal
kwargs.update(transform=ax2.transAxes) # switch to the bottom axes
ax2.plot((-d, +d), (1 - d, 1 + d), **kwargs) # bottom-left diagonal
ax2.plot((1 - d, 1 + d), (1 - d, 1 + d), **kwargs) # bottom-right diagonal
# BEGIN: Labels
# Remove X lables from the upper half of the plot
ax.tick_params(
axis='x', # changes apply to the x-axis
which='both', # both major and minor ticks are affected
bottom=False, # ticks along the bottom edge are off
top=False, # ticks along the top edge are off
labeltop=False,
labelbottom=False) # labels along the bottom edge are off
fig.text(0,0.5,'Energy in nJ', rotation=90, va='center', ha='left')
ax.set_xlabel("")
ax2.set_xlabel("")
# BEGIN: Scaling
ax.ticklabel_format(style='sci', axis='y', useOffset=True, scilimits=(0,0))
ax2.ticklabel_format(style='sci', axis='y', useOffset=True, scilimits=(0,0))
ax2.yaxis.get_offset_text().set_visible(False)
fig.tight_layout()
fig.subplots_adjust(hspace=0.05)
plt.show()