我正在尝试添加新列,并使用for循环填充数据,从Price列获取数据,并将1000次迭代插入新的dataframe列,在1000 Price列迭代之后,再为1000个新列创建一个新列,依此类推。
import pandas as pd
import matplotlib.pyplot as plt
data_frame = pd.read_csv('candle_data.csv', names=['Time', 'Symbol','Side', 'Size', 'Price','1','2','3','4','5'])
price_df = pd.DataFrame()
count_tick = 0
count_candle = 0
for price in data_frame['Price']:
if count_tick < 1000:
price_df[count_candle] = price
count_tick +=1
elif count_tick == 1000:
count_tick = 0
count_candle +=1
price_df.head()
答案 0 :(得分:0)
您不必遍历数据框,可以使用切片来实现此目的,请看下面的示例代码。我已经加载了一个具有100行的数据框,并尝试从“ col1”的前50行创建列-“ col3”,然后从“ col1”的后50行发布该列“ col4”。您可以修改以下代码以指向您的列和所需的值
import pandas as pd
import numpy as np
if __name__ == '__main__':
col1 = np.linspace(0,100,100)
col2 = np.linspace(100, 200, 100)
dict = {'col1':col1,'col2':col2}
df = pd.DataFrame(dict)
df['col3']= df['col1'][0:50]
df['col4'] = df['col1'][50:100]
print(df)
解决方案2基于评论中添加的信息
import pandas as pd
import numpy as np
if __name__ == '__main__':
pd.set_option('display.width', 100000)
pd.set_option('display.max_columns', 500)
### partition size for example I have taken a low volums 20
part_size = 20
## number generation for data frame
col1 = np.linspace(0,100,100)
col2 = np.linspace(100, 200, 100)
## create initial data frame
dict = {'col1':col1,'col2':col2}
df = pd.DataFrame(dict)
len = df.shape[0]
## tells you how many new columns you need
rec = int(len/part_size)
_ = {}
## initialize slicing variables
low =0
high=part_size
print(len)
for i in range(rec):
if high >= len:
_['col_name_here{0}'.format(i)] = df[low:]['col1']
break
else:
_['col_name_here{0}'.format(i)] = df[low:high]['col1']
low = high
high+= part_size
df = df.assign(**_)
print(df)