我借助Manager, Lock
的多处理功能在Python(版本3.7)中实现了 SharedList 。我已将其用作使用多处理Process
函数调用创建的进程之间的共享对象。共享列表用于存储共享每个进程所生成的值/对象。
SharedList 的实现与Python Manager
的{{1}}和Lock
multiprocessing
使用已创建的 SharedList 来存储使用class SharedList(object):
def __init__(self, limit):
self.manager = Manager()
self.results = self.manager.list([])
self.lock = Lock()
self.limit = limit
def append(self, new_value):
with self.lock:
if len(self.results) == self.limit:
return False
self.results.append(new_value)
return True
def list(self):
with self.lock:
return list(self.results).copy()
multiprocessing
results = SharedList(limit)
num_processes = min(process_count, limit)
processes = []
for i in range(num_processes):
new_process = Process(target=child_function, args=(results))
processes.append(new_process)
new_process.start()
for _process in processes:
_process.join()
for _process in processes:
_process.close()
的实现
child_function
在某些情况下,该实现方式有效,但是当我增加限制时,挂断了。 我使用的处理器数量少于CPU数量,并且相同的实验仍然挂在相同的位置。
是否有更好的方法来解决上述问题,我已经研究了不同的方法,例如使用Queue,但这无法按预期工作,挂断电话?
使用队列添加了以前的实现
使用队列实施
while True:
result = func()
if not (results.append(result)):
break
在results_out = []
manager = multiprocessing.Manager()
results = manager.Queue()
tasks = manager.Queue()
num_processes = min(process_count, limit)
processes = []
for i in range(num_processes):
new_process = multiprocessing.Process(target=child_function,
args=(tasks, results)
processes.append(new_process)
new_process.start()
sleep(5)
for i in range(limit):
tasks.put(0)
sleep(1)
for i in range(num_processes):
tasks.put(-1)
num_finished_processes = 0
while True:
new_result = results.get()
if new_result == -1:
num_finished_processes += 1
if num_finished_processes == num_processes:
break
else:
results_out.append(new_result)
for process in processes:
process.join()
for process in processes:
process.close()
child_function
已更新
在发布此问题之前,我已经阅读了以下参考资料,但是我无法获得所需的输出。我同意,这段代码导致了死锁状态,但是我无法在python中使用多处理来找到没有死锁的实现
参考
https://eli.thegreenplace.net/2012/01/04/shared-counter-with-pythons-multiprocessing
https://medium.com/@urban_institute/using-multiprocessing-to-make-python-code-faster-23ea5ef996ba
http://kmdouglass.github.io/posts/learning-pythons-multiprocessing-module/
根据建议,我可以使用while True:
task_val = tasks.get()
if task_val < 0:
results.put(-1)
break
else:
result = func()
results.put(result)
Queue
此实现效果很好,但对实现进行了以下更改
class SharedList(object):
def __init__(self, limit):
self.manager = Manager()
self.tasks = self.manager.Queue()
self.results = self.manager.Queue()
self.limit = limit
self.no_of_process = min(process_count, limit)
def setup(self):
sleep(1)
for i in range(self.limit):
self.tasks.put(0)
sleep(1)
for i in range(self.no_of_process):
self.tasks.put(-1)
def append(self, new_value):
task_val = self.tasks.get()
if task_val < 0:
self.results.put(-1)
return False
else:
self.results.put(new_value)
return True
def list(self):
results_out = []
num_finished_processes = 0
while True:
new_result = self.results.get()
if new_result == -1:
num_finished_processes += 1
if num_finished_processes == self.no_of_process:
break
else:
results_out.append(new_result)
return results_out
results = SharedList(limit)
num_processes = min(process_count, limit)
processes = []
for i in range(num_processes):
new_process = Process(target=child_function, args=(results))
processes.append(new_process)
new_process.start()
results.setup()
for _process in processes:
_process.join()
for _process in processes:
_process.close()
的实现
child_function
但是,仍然如此,在一些迭代之后,它再次陷入死锁,并在此挂起
答案 0 :(得分:1)
我发现以下基于 Ray 的文章,听起来很有趣,而且易于实现并行计算,既高效又省时