我正在尝试在Go中实现梯度下降。我的目标是根据行驶里程来预测汽车的成本。 这是我的数据集:
km,price
240000,3650
139800,3800
150500,4400
185530,4450
176000,5250
114800,5350
166800,5800
89000,5990
144500,5999
84000,6200
82029,6390
63060,6390
74000,6600
97500,6800
67000,6800
76025,6900
48235,6900
93000,6990
60949,7490
65674,7555
54000,7990
68500,7990
22899,7990
61789,8290
我尝试了各种方法,例如规范化数据集,不规范化数据集,保留thetas不变,对thetas进行非规范化……但是我无法获得正确的结果。 我的数学一定不在某个地方,但我不知道在哪里。 我想要得到的结果应该是大约t0 = 8500,t1 = -0.02 我的实现如下:
package main
import (
"encoding/csv"
"fmt"
"log"
"math"
"os"
"strconv"
)
const (
dataFile = "data.csv"
iterations = 20000
learningRate = 0.1
)
type dataSet [][]float64
var minKm, maxKm, minPrice, maxPrice float64
func (d dataSet) getExtremes(column int) (float64, float64) {
min := math.Inf(1)
max := math.Inf(-1)
for _, row := range d {
item := row[column]
if item > max {
max = item
}
if item < min {
min = item
}
}
return min, max
}
func normalizeItem(item, min, max float64) float64 {
return (item - min) / (max - min)
}
func (d *dataSet) normalize() {
minKm, maxKm = d.getExtremes(0)
minPrice, maxPrice = d.getExtremes(1)
for _, row := range *d {
row[0], row[1] = normalizeItem(row[0], minKm, maxKm), normalizeItem(row[1], minPrice, maxPrice)
}
}
func processEntry(entry []string) []float64 {
if len(entry) != 2 {
log.Fatalln("expected two fields")
}
km, err := strconv.ParseFloat(entry[0], 64)
if err != nil {
log.Fatalln(err)
}
price, err := strconv.ParseFloat(entry[1], 64)
if err != nil {
log.Fatalln(err)
}
return []float64{km, price}
}
func getData() dataSet {
file, err := os.Open(dataFile)
if err != nil {
log.Fatalln(err)
}
reader := csv.NewReader(file)
entries, err := reader.ReadAll()
if err != nil {
log.Fatalln(err)
}
entries = entries[1:]
data := make(dataSet, len(entries))
for k, entry := range entries {
data[k] = processEntry(entry)
}
return data
}
func outputResult(theta0, theta1 float64) {
file, err := os.OpenFile("weights.csv", os.O_WRONLY, 0644)
if err != nil {
log.Fatalln(err)
}
defer file.Close()
file.Truncate(0)
file.Seek(0, 0)
file.WriteString(fmt.Sprintf("theta0,%.6f\ntheta1,%.6f\n", theta0, theta1))
}
func estimatePrice(theta0, theta1, mileage float64) float64 {
return theta0 + theta1*mileage
}
func (d dataSet) computeThetas(theta0, theta1 float64) (float64, float64) {
dataSize := float64(len(d))
t0sum, t1sum := 0.0, 0.0
for _, it := range d {
mileage := it[0]
price := it[1]
err := estimatePrice(theta0, theta1, mileage) - price
t0sum += err
t1sum += err * mileage
}
return theta0 - (t0sum / dataSize * learningRate), theta1 - (t1sum / dataSize * learningRate)
}
func denormalize(theta, min, max float64) float64 {
return theta*(max-min) + min
}
func main() {
data := getData()
data.normalize()
theta0, theta1 := 0.0, 0.0
for k := 0; k < iterations; k++ {
theta0, theta1 = data.computeThetas(theta0, theta1)
}
theta0 = denormalize(theta0, minKm, maxKm)
theta1 = denormalize(theta1, minPrice, maxPrice)
outputResult(theta0, theta1)
}
要正确实施梯度下降,我应该解决什么?
答案 0 :(得分:2)
Linear Regression非常简单:
// yi = alpha + beta*xi + ei
func linearRegression(x, y []float64) (float64, float64) {
EX := expected(x)
EY := expected(y)
EXY := expectedXY(x, y)
EXX := expectedXY(x, x)
covariance := EXY - EX*EY
variance := EXX - EX*EX
beta := covariance / variance
alpha := EY - beta*EX
return alpha, beta
}
尝试here,输出:
8499.599649933218 -0.021448963591702314 396270.87871142407
代码:
package main
import (
"encoding/csv"
"fmt"
"strconv"
"strings"
)
func main() {
x, y := readXY(`data.csv`)
alpha, beta := linearRegression(x, y)
fmt.Println(alpha, beta, -alpha/beta) // 8499.599649933218 -0.021448963591702314 396270.87871142407
}
// https://en.wikipedia.org/wiki/Ordinary_least_squares#Simple_linear_regression_model
// yi = alpha + beta*xi + ei
func linearRegression(x, y []float64) (float64, float64) {
EX := expected(x)
EY := expected(y)
EXY := expectedXY(x, y)
EXX := expectedXY(x, x)
covariance := EXY - EX*EY
variance := EXX - EX*EX
beta := covariance / variance
alpha := EY - beta*EX
return alpha, beta
}
// E[X]
func expected(x []float64) float64 {
sum := 0.0
for _, v := range x {
sum += v
}
return sum / float64(len(x))
}
// E[XY]
func expectedXY(x, y []float64) float64 {
sum := 0.0
for i, v := range x {
sum += v * y[i]
}
return sum / float64(len(x))
}
func readXY(filename string) ([]float64, []float64) {
// file, err := os.Open(filename)
// if err != nil {
// panic(err)
// }
// defer file.Close()
file := strings.NewReader(data)
reader := csv.NewReader(file)
records, err := reader.ReadAll()
if err != nil {
panic(err)
}
records = records[1:]
size := len(records)
x := make([]float64, size)
y := make([]float64, size)
for i, v := range records {
val, err := strconv.ParseFloat(v[0], 64)
if err != nil {
panic(err)
}
x[i] = val
val, err = strconv.ParseFloat(v[1], 64)
if err != nil {
panic(err)
}
y[i] = val
}
return x, y
}
var data = `km,price
240000,3650
139800,3800
150500,4400
185530,4450
176000,5250
114800,5350
166800,5800
89000,5990
144500,5999
84000,6200
82029,6390
63060,6390
74000,6600
97500,6800
67000,6800
76025,6900
48235,6900
93000,6990
60949,7490
65674,7555
54000,7990
68500,7990
22899,7990
61789,8290`
Gradient descent基于以下观察结果:如果定义了多变量函数F(x)
并且在点a
的附近是可微的,则F(x)最快下降从a
朝F
,a
处-∇F(a)
的负梯度方向移动,例如:
// F(x)
f := func(x float64) float64 {
return alpha + beta*x // write your target function here
}
微分函数:
h := 0.000001
// Derivative function ∇F(x)
df := func(x float64) float64 {
return (f(x+h) - f(x-h)) / (2 * h) // write your target function derivative here
}
搜索:
minimunAt := 1.0 // We start the search here
gamma := 0.01 // Step size multiplier
precision := 0.0000001 // Desired precision of result
max := 100000 // Maximum number of iterations
currentX := 0.0
step := 0.0
for i := 0; i < max; i++ {
currentX = minimunAt
minimunAt = currentX - gamma*df(currentX)
step = minimunAt - currentX
if math.Abs(step) <= precision {
break
}
}
fmt.Printf("Minimum at %.8f value: %v\n", minimunAt, f(minimunAt))