我正在使用TransformedTargetRegressor定义我的自定义回归器,将其添加到管道中并将模型保存在“ joblib”文件中。但是,当我尝试加载模型时,出现错误
模块“ 主要”没有属性“ transform_targets”
其中transform_targets是为回归器定义的功能之一
def transform_targets(targets):
targets = (targets - min_t)/(max_t-min_t)
return targets
def inv_transform_targets(outputs):
outputs = (outputs)*(max_t-min_t)+min_t
return outputs
# Define the model
mlp_model = MLPRegressor(activation = 'relu', validation_fraction = 0.2, hidden_layer_sizes=(1000, ))
full_model = TransformedTargetRegressor(regressor = mlp_model, func = transform_targets,
inverse_func = inv_transform_targets)
# Incorporate feature scaling via pipeline
pipeline = make_pipeline(MinMaxScaler(), full_model)
nn_model = pipeline.fit(X_train,y_train)
# Fit the model which uses the transformed target regressor + maxmin pipeline
nn_model.fit(X_train,y_train)
from joblib import dump, load
dump(nn_model, 'fitness_nn_C1.joblib')
该模型运行良好且可以很好地进行预测,可以保存且没有错误,但不会加载回去。如果我用泡菜将其保存,它也会返回类似的错误
AttributeError:模块' main '>
上无法获取属性'transform_targets'
有人知道如何保存一个包含TransformedTargetRegressor的模型到一个文件中,然后可以成功地重新加载它吗?我意识到我可以将与转换目标相关的参数/函数转储到一个单独的文件中,但这正是我要避免的
编辑:
当前解决方法是将MinMaxScaler用作转换器或预处理批次中的任何其他转换器,但仍不知道是否可以在此工作流程中包含自定义功能
答案 0 :(得分:1)
问题是,当您尝试重新加载文件时,它无法解析最初未转储的transform_targets
。您可以使用dill
对其进行序列化。因此,基本上,您必须创建要转储的项目的列表,然后使用dill
和joblib
对其进行序列化,如下所示:
from sklearn.neural_network import MLPRegressor
from sklearn.compose import TransformedTargetRegressor
from sklearn.pipeline import make_pipeline
from sklearn.datasets import make_friedman1
from sklearn.preprocessing import MinMaxScaler
import dill
X, y = make_friedman1(n_samples=50, n_features=10, random_state=0)
min_t = 10
max_t = 300
def transform_targets(targets):
targets = (targets - min_t)/(max_t-min_t)
return targets
def inv_transform_targets(outputs):
outputs = (outputs)*(max_t-min_t)+min_t
return outputs
# Define the model
mlp_model = MLPRegressor(activation = 'relu', validation_fraction = 0.2, hidden_layer_sizes=(1000, ))
full_model = TransformedTargetRegressor(regressor = mlp_model, func = transform_targets,
inverse_func = inv_transform_targets)
# Incorporate feature scaling via pipeline
pipeline = make_pipeline(MinMaxScaler(), full_model)
nn_model = pipeline.fit(X,y)
# Fit the model which uses the transformed target regressor + maxmin pipeline
nn_model.fit(X,y)
to_save = [transform_targets, inv_transform_targets, nn_model]
r = dill.dumps(to_save)
from joblib import dump, load
dump(r, 'fitness_nn_C1.joblib')
现在您可以按如下所示加载它:
from joblib import dump, load
import dill
Q = load('fitness_nn_C1.joblib')
T = dill.loads(Q)
T看起来像这样:
[<function __main__.transform_targets(targets)>,
<function __main__.inv_transform_targets(outputs)>,
Pipeline(memory=None,
steps=[('minmaxscaler', MinMaxScaler(copy=True, feature_range=(0, 1))),
('transformedtargetregressor',
TransformedTargetRegressor(check_inverse=True,
func=<function transform_targets at 0x000001F486D27048>,
inverse_func=<function inv_transform_targets at 0x000001F4882E6C80>,
regressor=MLPRegressor(activation='relu',
alpha=0.0001,
batch_size='a...
beta_2=0.999,
early_stopping=False,
epsilon=1e-08,
hidden_layer_sizes=(1000,),
learning_rate='constant',
learning_rate_init=0.001,
max_iter=200,
momentum=0.9,
n_iter_no_change=10,
nesterovs_momentum=True,
power_t=0.5,
random_state=None,
shuffle=True,
solver='adam',
tol=0.0001,
validation_fraction=0.2,
verbose=False,
warm_start=False),
transformer=None))],
verbose=False)]
希望这会有所帮助!