我想根据值列表在数据框中添加一个子级别(L4):
x = [0.01, 0.01, 0.01, 0.02, 0.02, 0.02]
df.columns返回此消息:
MultiIndex(levels=[['Foo', 'Bar'], ['A', 'B', 'C'], ['a']],
labels=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2], [0, 0, 0, 0, 0, 0]],
names=['L1', 'L2', 'L3'])
到目前为止,我已经尝试过:
df = pd.concat([df], keys=x, names=['L4'], axis=1).swaplevel(i='L4', j='L1', axis=1).swaplevel(i='L4', j='L2', axis=1).swaplevel(i='L4', j='L3', axis=1)
但是它的价值不高,它会重复list_levels [0](0.01)。
您对我该怎么做有任何想法吗?
谢谢
答案 0 :(得分:0)
您可以创建一个DataFrame,其列索引为Index,data
是您要添加的级别,因为set_index(append=True)
仅为行Index定义。然后将其分配给df.columns = ...
import pandas as pd
idx = pd.MultiIndex(levels=[['Foo', 'Bar'], ['A', 'B', 'C'], ['a']],
codes=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2], [0, 0, 0, 0, 0, 0]],
names=['L1', 'L2', 'L3'])
x = [0.01, 0.01, 0.01, 0.02, 0.02, 0.02]
pd.DataFrame(x, index=idx, columns=['L4']).set_index('L4', append=True).index
#MultiIndex([('Foo', 'A', 'a', 0.01),
# ('Foo', 'B', 'a', 0.01),
# ('Foo', 'C', 'a', 0.01),
# ('Bar', 'A', 'a', 0.02),
# ('Bar', 'B', 'a', 0.02),
# ('Bar', 'C', 'a', 0.02)],
# names=['L1', 'L2', 'L3', 'L4'])
内幕set_index
只是在添加时重新创建了整个MultiIndex,因此更实用的方法是
arrays = []
for i in range(idx.nlevels):
arrays.append(idx.get_level_values(i))
arrays.append(pd.Index(x, name='L4')) # Add the new level
new_idx = pd.MultiIndex.from_arrays(arrays)
#MultiIndex([('Foo', 'A', 'a', 0.01),
# ('Foo', 'B', 'a', 0.01),
# ('Foo', 'C', 'a', 0.01),
# ('Bar', 'A', 'a', 0.02),
# ('Bar', 'B', 'a', 0.02),
# ('Bar', 'C', 'a', 0.02)],
# names=['L1', 'L2', 'L3', 'L4'])
答案 1 :(得分:0)