我有一个数据帧df,其列为pm1和pm25。我想显示这两个信号之间的相关性的图表(带有Plotly)。到目前为止,我已经设法显示了散点图,但是我没有设法画出信号之间的相关性的拟合线。到目前为止,我已经尝试过:
denominator=df.pm1**2-df.pm1.mean()*df.pm1.sum()
print('denominator',denominator)
m=(df.pm1.dot(df.pm25)-df.pm25.mean()*df.pm1.sum())/denominator
b=(df.pm25.mean()*df.pm1.dot(df.pm1)-df.pm1.mean()*df.pm1.dot(df.pm25))/denominator
y_pred=m*df.pm1+b
lineOfBestFit = go.Scattergl(
x=df.pm1,
y=y_pred,
name='Line of best fit',
line=dict(
color='red',
)
)
data = [dataPoints, lineOfBestFit]
figure = go.Figure(data=data)
figure.show()
情节:
如何正确绘制lineOfBestFit?
答案 0 :(得分:1)
对于回归分析,我喜欢使用statsmodels.api
或sklearn.linear_model
。我还喜欢在熊猫数据框中组织数据和回归结果。这是一种以一种干净有序的方式来做您想要的事情的方法:
使用sklearn或statsmdodels进行绘图:
使用sklearn的代码:
from sklearn.linear_model import LinearRegression
import plotly.graph_objects as go
import pandas as pd
import numpy as np
import datetime
# data
np.random.seed(123)
numdays=20
X = (np.random.randint(low=-20, high=20, size=numdays).cumsum()+100).tolist()
Y = (np.random.randint(low=-20, high=20, size=numdays).cumsum()+100).tolist()
df = pd.DataFrame({'X': X, 'Y':Y})
# regression
reg = LinearRegression().fit(np.vstack(df['X']), Y)
df['bestfit'] = reg.predict(np.vstack(df['X']))
# plotly figure setup
fig=go.Figure()
fig.add_trace(go.Scatter(name='X vs Y', x=df['X'], y=df['Y'].values, mode='markers'))
fig.add_trace(go.Scatter(name='line of best fit', x=X, y=df['bestfit'], mode='lines'))
# plotly figure layout
fig.update_layout(xaxis_title = 'X', yaxis_title = 'Y')
fig.show()
使用统计模型的代码:
import plotly.graph_objects as go
import statsmodels.api as sm
import pandas as pd
import numpy as np
import datetime
# data
np.random.seed(123)
numdays=20
X = (np.random.randint(low=-20, high=20, size=numdays).cumsum()+100).tolist()
Y = (np.random.randint(low=-20, high=20, size=numdays).cumsum()+100).tolist()
df = pd.DataFrame({'X': X, 'Y':Y})
# regression
df['bestfit'] = sm.OLS(df['Y'],sm.add_constant(df['X'])).fit().fittedvalues
# plotly figure setup
fig=go.Figure()
fig.add_trace(go.Scatter(name='X vs Y', x=df['X'], y=df['Y'].values, mode='markers'))
fig.add_trace(go.Scatter(name='line of best fit', x=X, y=df['bestfit'], mode='lines'))
# plotly figure layout
fig.update_layout(xaxis_title = 'X', yaxis_title = 'Y')
fig.show()
答案 1 :(得分:1)
Plotly还带有用于统计模型的本机包装,用于绘制(非)线性线:
引用其文档,网址为:https://plotly.com/python/linear-fits/
import plotly.express as px
df = px.data.tips()
fig = px.scatter(df, x="total_bill", y="tip", trendline="ols")
fig.show()