获得以下pyspark代码:
import pyspark.sql.functions as F
null_or_unknown_count = df.sample(0.01).filter(
F.col('env').isNull() | (F.col('env') == 'Unknown')
).count()
在测试代码中,数据帧是模拟的,所以我试图像这样设置此调用的return_value:
from unittest import mock
from unittest.mock import ANY
@mock.patch('pyspark.sql.DataFrame', spec=pyspark.sql.DataFrame)
def test_null_or_unknown_validation(self, mock_df):
mock_df.sample(0.01).filter(ANY).count.return_value = 250
但是此操作失败,并显示以下内容:
File "/usr/local/lib/python3.7/site-packages/pyspark/sql/functions.py", line 44, in _
jc = getattr(sc._jvm.functions, name)(col._jc if isinstance(col, Column) else col)
AttributeError: 'NoneType' object has no attribute '_jvm'
还尝试了mock_df.sample().filter().count.return_value = 250
,它给出了相同的错误。
如何正确模拟过滤器,即F.col('env').isNull() | (F.col('env') == 'Unknown')
?
答案 0 :(得分:2)
感谢我聪明的同事在工作,这就是答案。我们必须模拟pyspark.sql.functions.col
,然后设置return_value。
@mock.patch('pyspark.sql.functions.col')
@mock.patch('pyspark.sql.DataFrame', spec=pyspark.sql.DataFrame)
def test_null_or_unknown_validation(self, mock_df, mock_functions):
mock_functions.isNull.return_value = True # (or False also works)
mock_df.sample(0.01).filter(ANY).count.return_value = 250
使用mock_df.sample().filter().count.return_value = 250
也可以。