我正在尝试使用ImageDataGenerator()建立图像分类模型。 似乎该模型训练和执行不佳。训练损失保持在15左右,准确度仅为10%,验证结果大致相同。
我只是想看看会发生什么,所以我尝试不使用ImageDataGenerator()进行训练,并以类似的方式设置数据。它在培训,验证和测试方面的表现要好得多。训练损失为0.71,准确性为75%,验证损失为0.8,准确性为72%。
我需要使用数据生成器来弄清楚这个模型,因为我将继续研究更大的数据集,而该数据集将无法容纳在内存中。
所以,我想我的问题是ImageDataGenerator()表现不好,怎么办?我该如何改善结果?
设置文件时(在所有Train,Test和Validation文件夹中),有些类具有其自己的文件夹,而这些文件夹中是图像所在的位置。
代码如下:
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import pickle
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation, Flatten, Conv2D, MaxPooling2D, Dropout
data_gen = ImageDataGenerator()
IMG_SIZE = 100
train_it = data_gen.flow_from_directory('D:/.../Train/', class_mode='sparse',
target_size=(IMG_SIZE, IMG_SIZE),color_mode='grayscale', shuffle=True,batch_size=32)
val_it = data_gen.flow_from_directory('D:/.../Validation/', class_mode='sparse',
target_size=(IMG_SIZE, IMG_SIZE),color_mode='grayscale', shuffle=True,batch_size=32)
IMAGE_SIZE = [100, 100]
model=Sequential()
model.add(Conv2D(32,(3,3), input_shape=[*IMAGE_SIZE, 1]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.5))
model.add(Conv2D(32,(3,3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.5))
model.add(Conv2D(32,(3,3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(len(train_it.class_indices), activation='softmax'))
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit_generator(train_it, epochs=20, validation_data=val_it )
这是我没有ImageDataGenerator()的代码: 使用OpenCV设置数据
DATADIR='D:\...\Train'
CATEGORIES = pickle.load(open("CATEGORIES.p" , "rb"))
print(len(CATEGORIES))
IMG_SIZE = 100
training_data=[]
def create_training_data():
for category in CATEGORIES:
path = os.path.join(DATADIR,category)
class_num = CATEGORIES.index(category)
for img in os.listdir(path):
try:
img_array = cv2.imread(os.path.join(path,img),cv2.IMREAD_GRAYSCALE)
new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE))
training_data.append([new_array, class_num])
except:
print(category)
print(img)
create_training_data()
random.shuffle(training_data)
X=[]
y=[]
for features, label in training_data:
X.append(features)
y.append(label)
X=np.array(X).reshape(-1,IMG_SIZE, IMG_SIZE, 1)
X=X/255.0
模型设置:
model=Sequential()
model.add(Conv2D(32,(3,3), input_shape=[*IMAGE_SIZE, 1]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.5))
model.add(Conv2D(32,(3,3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.5))
model.add(Conv2D(32,(3,3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(len(CATEGORIES), activation='softmax'))
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X,y, epochs=20, batch_size=32, validation_split=0.1)
答案 0 :(得分:2)
@acho
提及您在评论中引用的此问题的解决方案,以造福社区。 p>
该问题的原因是输入数据未通过将每个像素值除以255进行归一化。由于以下原因,它对训练有影响: