熊猫日期时间:基于时滞进行汇总

时间:2019-10-22 12:40:31

标签: python pandas datetime group-by aggregate

我有一个包含3列的数据框,其中包含id,时间戳和事件类型:

    id      timestamp   event_type
    ___________________________
0   1       2019-10-01      E1
1   1       2019-10-03      E3
2   2       2019-10-04      E3
3   2       2019-10-05      E4
4   2       2019-10-06      E1
5   1       2019-10-07      E3
6   1       2019-10-07      E4
7   1       2019-10-13      E3
8   2       2019-10-22      E5

我正在寻找一种汇总方法,以便将属于同一id且时延X=3。

即第0行和第1行应显示为一个列表,因为它们的时间戳记相隔不超过3天。

所以我想要的输出如下:

    id2     event_hist
    _______________
0   1-1     [E1, E3]
1   2-1     [E3, E4, E1]
2   1-2     [E3, E4]
3   1-3     [E3]
4   2-2     [E5]

id2列只是第一个数据帧的id,针对每个新序列进行迭代。

我可以编写一个函数来实现所需的结果,但是有内置方法吗? 最蟒蛇的方式是什么获得所需的输出?

2 个答案:

答案 0 :(得分:2)

如果列时间戳不是日期时间,则从该日期开始

df['timestamp'] = pd.to_datetime(df['timestamp'])

t = df.groupby('id').apply(lambda g: g.rolling('3d', on='timestamp').count())
new = df.groupby(t['id'].le(t.shift()['id']).cumsum()) \
        .agg(event_hist=('event_type', list), id2=('id', 'first'))
new['id2'] = new['id2'].astype(str) + \
                '-' + \
                new.groupby('id2').cumcount().add(1).astype(str)

产生

            hist  id2
id                   
0       [E1, E3]  1-1
1   [E3, E4, E1]  2-1
2       [E3, E4]  1-2
3           [E3]  1-3
4           [E5]  2-2

答案 1 :(得分:1)

我找到了我的问题的答案,这似乎行得通。尽管我认为@ splash58提出的答案更有效,并且使用更少的行和更多的内置函数。

def get_aggregate_by_lag(df, idcol, datecol, valuecol, max_lag):
    import pandas as pd

    res_dict = {}
    for id in df[idcol].unique():
        sub_df = df[df[idcol] == id].reset_index(drop=True)

        current_sequence = [sub_df[valuecol][0]]

        sequence_counter = 1

        if len(sub_df) == 1:
            res_dict[f"{id}-{sequence_counter}"] = [current_sequence]
            continue

        for i in range(1,len(sub_df)):
            if (sub_df[datecol][i] - sub_df[datecol][i-1]).days <= max_lag:
                current_sequence.append(sub_df[valuecol][i])
                if i == len(sub_df)-1:
                    res_dict[f"{id}-{sequence_counter}"] = [current_sequence]
            else:
                res_dict[f"{id}-{sequence_counter}"] = [current_sequence]
                sequence_counter += 1
                current_sequence = [sub_df[valuecol][i]]

    return pd.DataFrame.from_dict(res_dict, columns=["hist"], orient="Index")