我正在研究TensorFlow 2.0和Transformer,键入时标题出现错误
value = Embedding(tf.shape(vocals).numpy()[0], d_model=512)
vocals
是形状为(100,45)的张量。
该层的代码是:
def positional_encoding(length, d_model):
encoded_vec = tf.Variable([pos/tf.pow(10000, 2*i/d_model) for pos in range(length) for i in range(d_model)],
dtype=tf.float32)
encoded_vec[::2] = tf.sin(encoded_vec[::2])
encoded_vec[1::2] = tf.cos(encoded_vec[1::2])
return encoded_vec.reshape([sentence_length, dim])
class Embedding(tf.keras.layers.Layer):
def __init__(self, vocab_size, d_model, dropout=0.1):
super().__init__()
self.d_model = d_model
self.token_embedding = tf.keras.layers.Embedding(vocab_size, d_model)
self.positional_encoding = positional_encoding(vocab_size, d_model)
self.dropout = tf.keras.layers.Dropout(dropout)
def call(self, x):
seq_len = tf.shape(x)[1]
x = self.token_embedding(x)
x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
x += self.positional_encoding[:, :seq_len, :]
x = self.dropout(x)
return x
答案 0 :(得分:0)
更改
encoded_vec = tf.Variable([pos/tf.pow(10000, 2*i/d_model) for pos in range(length) for i in range(d_model)],
dtype=tf.float32)
到
encoded_vec = np.array([pos/10000 ** (2*i/d_model) for pos in range(length) for i in range(d_model)],
dtype=tf.float32)
答案 1 :(得分:0)
我对以下消息有同样的问题
<块引用>类型错误:无法将 1e-07 转换为 dtype uint8 的 EagerTensor
尝试将 vocals 转换为所需的数据类型 np.float32
,因为它询问 Cannot convert 0.0 to EagerTensor of dtype int32
我认为您的 vocals 数据类型在哪里{ {1}}。