代码如下:
import tensorflow as tf
from keras_contrib.layers import CRF
from tensorflow import keras
def create_model(max_seq_len, adapter_size=64):
"""Creates a classification model."""
# adapter_size = 64 # see - arXiv:1902.00751
# create the bert layer
with tf.io.gfile.GFile(bert_config_file, "r") as reader:
bc = StockBertConfig.from_json_string(reader.read())
bert_params = map_stock_config_to_params(bc)
bert_params.adapter_size = adapter_size
bert = BertModelLayer.from_params(bert_params, name="bert")
input_ids = keras.layers.Input(shape=(max_seq_len,), dtype='int32', name="input_ids")
# token_type_ids = keras.layers.Input(shape=(max_seq_len,), dtype='int32', name="token_type_ids")
# output = bert([input_ids, token_type_ids])
bert_output = bert(input_ids)
print("bert_output.shape: {}".format(bert_output.shape)) # (?, 100, 768)
crf = CRF(len(tag2idx))
logits = crf(bert_output)
model = keras.Model(inputs=input_ids, outputs=logits)
model.build(input_shape=(None, max_seq_len))
# load the pre-trained model weights
load_stock_weights(bert, bert_ckpt_file)
# freeze weights if adapter-BERT is used
if adapter_size is not None:
freeze_bert_layers(bert)
model.compile('adam', loss=crf.loss_function, metrics=[crf.accuracy])
model.summary()
return model
我正在使用tensorflow keras,也使用keras_contrib包来执行NER。似乎tensorflow keras软件包不能与keras_contrib软件包一起很好地工作。
回溯信息如下:
Traceback (most recent call last):
File "F:/_gitclone3/bert_examples/bert_ner_example_eval.py", line 120, in <module>
model = create_model(max_seq_len, adapter_size=adapter_size)
File "F:/_gitclone3/bert_examples/bert_ner_example_eval.py", line 101, in create_model
logits = crf(bert_output)
File "C:\Users\yuexiang\Anaconda3\lib\site-packages\keras\engine\base_layer.py", line 443, in __call__
previous_mask = _collect_previous_mask(inputs)
File "C:\Users\yuexiang\Anaconda3\lib\site-packages\keras\engine\base_layer.py", line 1311, in _collect_previous_mask
mask = node.output_masks[tensor_index]
AttributeError: 'Node' object has no attribute 'output_masks'
如何将CRF与tensorflow keras一起使用?
答案 0 :(得分:1)
我遇到了类似的问题,花了很多时间试图使事情正常进行。这是使用python 3.6.5对我有用的东西:
序列:
pip install seqeval==0.0.5
凯拉斯:
pip install keras==2.2.4
Keras-contrib(2.0.8):
git clone https://www.github.com/keras-team/keras-contrib.git
cd keras-contrib
python setup.py install
TensorFlow:
pip install tensorflow==1.14.0
执行pip list
以确保您已经实际安装了这些版本(例如pip seqeval
可能会自动更新您的keras)
然后在您的代码中导入,如下所示:
from keras.models import *
from keras.layers import LSTM, Embedding, Dense, TimeDistributed, Dropout, Bidirectional, Input
from keras_contrib.layers import CRF
#etc.
希望这会有所帮助,祝您好运!
答案 1 :(得分:1)
您可以尝试使用tensorflow附加组件(如果您使用的是Tensorflow版本2)。 您可以尝试tf-crf-layer(如果您使用的是tensorflow == 1.15.0)