我使用here中的代码来训练模型,以预测从0
到9
的印刷样式编号:
idx_to_class = {0: "0", 1: "1", 2: "2", 3: "3", 4: "4", 5: "5", 6: "6", 7:"7", 8: "8", 9:"9"}
def predict(model, test_image_name):
transform = image_transforms['test']
test_image = Image.open(test_image_name)
plt.imshow(test_image)
test_image_tensor = transform(test_image)
if torch.cuda.is_available():
test_image_tensor = test_image_tensor.view(1, 3, 224, 224).cuda()
else:
test_image_tensor = test_image_tensor.view(1, 3, 224, 224)
with torch.no_grad():
model.eval()
# Model outputs log probabilities
out = model(test_image_tensor)
ps = torch.exp(out)
topk, topclass = ps.topk(1, dim=1)
# print(topclass.cpu().numpy()[0][0])
print("Image class: ", idx_to_class[topclass.cpu().numpy()[0][0]])
predict(model, "path_of_test_image")
但是尝试使用predict
时出现错误:
Traceback (most recent call last):
File "<ipython-input-12-f8636d3ba083>", line 26, in <module>
predict(model, "/home/x/文档/Deep_Learning/pytorch/MNIST/test/2/QQ截图20191022093955.png")
File "<ipython-input-12-f8636d3ba083>", line 9, in predict
test_image_tensor = transform(test_image)
File "/home/x/.local/lib/python3.6/site-packages/torchvision/transforms/transforms.py", line 61, in __call__
img = t(img)
File "/home/x/.local/lib/python3.6/site-packages/torchvision/transforms/transforms.py", line 166, in __call__
return F.normalize(tensor, self.mean, self.std, self.inplace)
File "/home/x/.local/lib/python3.6/site-packages/torchvision/transforms/functional.py", line 217, in normalize
tensor.sub_(mean[:, None, None]).div_(std[:, None, None])
RuntimeError: The size of tensor a (4) must match the size of tensor b (3) at non-singleton dimension 0
我该如何解决?谢谢。
答案 0 :(得分:2)
我怀疑您的#include <stdio.h>
#include <signal.h>
#include <unistd.h>
volatile sig_atomic_t exitSig = 0;
volatile sig_atomic_t feedExitSig = 0;
void signal_handler(int signum)
{
if (signum == SIGINT) {
if (feedExitSig) /* only if feedExitSig already set */
exitSig = 1; /* set exitSig - requires 2nd ctrl+c */
feedExitSig = 1;
}
}
int main (void) {
signal (SIGINT, signal_handler);
while (!exitSig){
puts ("outer");
while (!feedExitSig){
puts (" inner");
sleep(1);
}
sleep(1);
}
}
每个像素有一个附加的alpha通道,因此它只有4个通道,而只有3个。
试试:
test_image