我创建了1000个要递增的线程,1000个要递减的线程,1000个要读取值的线程。
每个增加线程,将值增加25000次。
每个递减线程,将值减少25000次。
每个读取线程,读取该值50000次。
因此,所有操作均以读取为主。
在读取值时放置了ReadLock
和WriteLock用于方法增加和减少值。
已观察到:ReentrantReadWriteLock大约需要13000毫秒 锁定大约需要3000毫秒。 预期:ReentrantReadWriteLock的性能要比ReentrantLock快得多。
顺便说一句:我个人认为使用getCounter方法时无需锁定/同步(只需读取值)
import java.util.ArrayList;
import java.util.concurrent.locks.ReentrantLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
public class Main {
public static void main(String[] args) throws InterruptedException {
ArrayList<Thread> reads = new ArrayList<>();
ArrayList<Thread> increments = new ArrayList<>();
ArrayList<Thread> decrements = new ArrayList<>();
Resources resources = new Resources();
long start = System.currentTimeMillis();
for (int i = 0; i < 1000; i++) {
Thread read = new Read(resources);
Thread increment = new Increment(resources);
Thread decrement = new Decrement(resources);
reads.add(read);
increments.add(increment);
decrements.add(decrement);
read.start();
increment.start();
decrement.start();
}
for (int i = 0; i < 1000; i++) {
reads.get(i).join();
increments.get(i).join();
decrements.get(i).join();
}
System.out.println(resources.getCounter());
System.out.println(System.currentTimeMillis() - start);
}
private static abstract class UserThread extends Thread {
protected Resources resources;
public UserThread(Resources resources) {
this.resources = resources;
}
}
private static class Read extends UserThread {
public Read(Resources resources) {
super(resources);
}
public void run() {
for (int i = 0; i < 50000; i++) {
resources.getCounter();
}
}
}
private static class Increment extends UserThread {
public Increment(Resources resources) {
super(resources);
}
public void run() {
for (int i = 0; i < 25000; i++) {
resources.increment();
}
}
}
private static class Decrement extends UserThread {
public Decrement(Resources resources) {
super(resources);
}
public void run() {
for (int i = 0; i < 25000; i++) {
resources.decrement();
}
}
}
private static class Resources {
private ReentrantReadWriteLock reentrantReadWriteLock = new ReentrantReadWriteLock();
private ReentrantReadWriteLock.WriteLock writeLock = reentrantReadWriteLock.writeLock();
private ReentrantReadWriteLock.ReadLock readLock = reentrantReadWriteLock.readLock();
private ReentrantLock lock = new ReentrantLock();
public int getCounter() {
readLock.lock();
try {
return counter;
} finally {
readLock.unlock();
}
}
private int counter = 0;
public void increment() {
writeLock.lock();
try {
counter++;
} finally {
writeLock.unlock();
}
}
public void decrement() {
writeLock.lock();
try {
counter--;
} finally {
writeLock.unlock();
}
}
}
}
答案 0 :(得分:2)
这些类型的锁-读写-通常经过优化,适合于许多读者以及一个或几个作者。他们经常玩游戏,期望读取速度很快而写入次数很少。此外,它们针对公平性或对请求的FIFO处理进行了优化,以避免线程停顿。
您做的恰恰相反。您会做很多作家,这些作家会导致过多的自旋和其他复杂的方法,适合于“多读少写”的情况。
简单锁很简单。它们仅在准备就绪时阻塞所有线程,并且不会发生旋转。它们的缺点是当唤醒多个线程以使其再次休眠时会引起雪崩效应。
答案 1 :(得分:0)
感谢Nick和Slaw指出,它不是主要读物。 我确保我有100个增量,100个减量和1000个读取线程。
结果符合预期。 ReentrantReadWriteLock的输出为300毫秒 并且withLock为5000毫秒。
这是修改后的代码
#include <iostream>