一种可视化ridge regression解决方案的常用方法是L curve,它针对正则化参数的不同选择绘制平方误差的总和相对于脊峰惩罚。 sklearn可以做到吗?
答案 0 :(得分:1)
这是一个纯粹的sklearn答案:
import numpy as np
from sklearn.linear_model import Ridge
alphas = np.logspace(-10, 10, 1000)
solution_norm = []
residual_norm = []
for alpha in alphas:
lm = Ridge(alpha=alpha)
lm.fit(X, y)
solution_norm += [(lm.coef_**2).sum()]
residual_norm += [((lm.predict(X) - y)**2).sum()]
plt.loglog(residual_norm, solution_norm, 'k-')
plt.show()
其中X
和y
分别是您的预测变量和目标。
答案 1 :(得分:0)
scikit-learn中没有此类内置功能,但此类功能由Yellowbrick库提供(使用pip
或conda
安装);将LassoCV示例从其documentation改编为您的RidgeCV案例可得出:
import numpy as np
from sklearn.linear_model import RidgeCV
from yellowbrick.regressor import AlphaSelection
from yellowbrick.datasets import load_concrete
# Load the regression dataset
X, y = load_concrete()
# Create a list of alphas to cross-validate against
alphas = np.logspace(-10, 1, 40)
# Instantiate the linear model and visualizer
model = RidgeCV(alphas=alphas)
visualizer = AlphaSelection(model)
visualizer.fit(X, y)
visualizer.show()