我正在寻找解决方案以显示在两列之间有差异的字符串中的位置
Input:
df=pd.DataFrame({'A':['this is my favourite one','my dog is the best'],
'B':['now is my favourite one','my doggy is the worst']})
expected output:
[A-B],[B-A]
0:4 ,0:3 #'this','now'
3:6 ,3:8 #'dog','doggy'
14:18,16:21 #'best','worst'
现在我只能搜索差异(但是不起作用,不知道为什么)
df['A-B']=df.apply(lambda x: x['A'].replace(x['B'], "").strip(),axis=1)
df['B-A']=df.apply(lambda x: x['B'].replace(x['A'], "").strip(),axis=1)
答案 0 :(得分:1)
您的问题很简单,正如评论中所述,最好使用difflib.Sequencematcher.get_matching_blocks
来解决这个问题,但是我无法解决它。因此,这是一个可行的解决方案,它不会在速度方面发挥作用,但是会得到输出。
首先我们得到单词上的差异,然后在每一列中找到起始和结束位置:
def get_diff_words(col1, col2):
diff_words = [[w1, w2] for w1, w2 in zip(col1, col2) if w1 != w2]
return diff_words
df['diff_words'] = df.apply(lambda x: get_diff_words(x['A'].split(), x['B'].split()), axis=1)
df['pos_A'] = df.apply(lambda x: [f'{x["A"].find(word[0])}:{x["A"].find(word[0])+len(word[0])}' for word in x['diff_words']], axis=1)
df['pos_B'] = df.apply(lambda x: [f'{x["B"].find(word[1])}:{x["B"].find(word[1])+len(word[1])}' for word in x['diff_words']], axis=1)
输出
A B diff_words pos_A pos_B
0 this is my favourite one now is my favourite one [[this, now]] [0:4] [0:3]
1 my dog is the best my doggy is the worst [[dog, doggy], [best, worst]] [3:6, 14:18] [3:8, 16:21]