我可以使用pybind1
将三维numpy数组传递给接受Eigen::Tensor
作为参数的c ++函数。例如,考虑以下c ++函数:
Eigen::Tensor<double, 3> addition_tensor(Eigen::Tensor<double, 3> a,
Eigen::Tensor<double, 3> b) {
return a + b;
}
编译函数,将其导入python并将numpy数组np.ones((1, 2, 2))
传递给它后,我收到以下错误消息:
TypeError: addition_tensor(): incompatible function arguments. The following argument types are supported:
1. (arg0: Eigen::Tensor<double, 3, 0, long>, arg1: Eigen::Tensor<double, 3, 0, long>) -> Eigen::Tensor<double, 3, 0, long>
由于无法将三维numpy array
传递给接受Eigen::MatrixXd
的函数,我感到特别惊讶,因为它无法传递三维numpy数组,例如:
Eigen::MatrixXd addition(Eigen::MatrixXd a, Eigen::MatrixXd b) { return a + b; }
此示例中使用的整个代码是:
#include <eigen-git-mirror/Eigen/Dense>
#include <eigen-git-mirror/unsupported/Eigen/CXX11/Tensor>
#include "pybind11/include/pybind11/eigen.h"
#include "pybind11/include/pybind11/pybind11.h"
Eigen::MatrixXd addition(Eigen::MatrixXd a, Eigen::MatrixXd b) { return a + b; }
Eigen::Tensor<double, 3> addition_tensor(Eigen::Tensor<double, 3> a,
Eigen::Tensor<double, 3> b) {
return a + b;
}
PYBIND11_MODULE(example, m) {
m.def("addition", &addition, "A function which adds two numbers");
m.def("addition_tensor", &addition_tensor,
"A function which adds two numbers");
}
我用g++ -shared -fPIC `python3 -m pybind11 --includes` example.cpp -o example`python3-config --extension-suffix`
编译了上面的代码。有人知道如何将三维numpy
数组转换为接受三维Eigen::Tensor
的函数吗?
答案 0 :(得分:2)
不直接支持它,这里是一些讨论(如果您想将其添加到项目中,则包括一些执行映射的代码):https://github.com/pybind/pybind11/issues/1377
答案 1 :(得分:0)
感谢@John Zwinck的回答,我可以实现我想要的东西。如果有人感兴趣,这是复制品:
#include <eigen-git-mirror/Eigen/Dense>
#include <eigen-git-mirror/unsupported/Eigen/CXX11/Tensor>
#include "pybind11/include/pybind11/eigen.h"
#include "pybind11/include/pybind11/numpy.h"
#include "pybind11/include/pybind11/pybind11.h"
Eigen::Tensor<double, 3, Eigen::RowMajor> getTensor(
pybind11::array_t<double> inArray) {
// request a buffer descriptor from Python
pybind11::buffer_info buffer_info = inArray.request();
// extract data an shape of input array
double *data = static_cast<double *>(buffer_info.ptr);
std::vector<ssize_t> shape = buffer_info.shape;
// wrap ndarray in Eigen::Map:
// the second template argument is the rank of the tensor and has to be
// known at compile time
Eigen::TensorMap<Eigen::Tensor<double, 3, Eigen::RowMajor>> in_tensor(
data, shape[0], shape[1], shape[2]);
return in_tensor;
}
pybind11::array_t<double> return_array(
Eigen::Tensor<double, 3, Eigen::RowMajor> inp) {
std::vector<ssize_t> shape(3);
shape[0] = inp.dimension(0);
shape[1] = inp.dimension(1);
shape[2] = inp.dimension(2);
return pybind11::array_t<double>(
shape, // shape
{shape[1] * shape[2] * sizeof(double), shape[2] * sizeof(double),
sizeof(double)}, // strides
inp.data()); // data pointer
}
pybind11::array_t<double> addition(pybind11::array_t<double> a,
pybind11::array_t<double> b) {
Eigen::Tensor<double, 3, Eigen::RowMajor> a_t = getTensor(a);
Eigen::Tensor<double, 3, Eigen::RowMajor> b_t = getTensor(b);
Eigen::Tensor<double, 3, Eigen::RowMajor> res = a_t + b_t;
return return_array(res);
}
PYBIND11_MODULE(example, m) {
m.def("addition", &addition, "A function which adds two numbers");
}
与约翰提到的链接中的建议相反,我不介意为RowMajor
使用Eigen::Tensor
的存储顺序。我还发现tensorflow
代码中也多次使用了此存储顺序。我不知道上面的代码是否不必要地复制了数据。