我可以使用以下Apache Arrow代码编写一个简单的实木复合地板文件:
#include <vector>
#include <cstdint>
#include <map>
#include <arrow/api.h>
#include <arrow/io/api.h>
#include <parquet/arrow/reader.h>
#include <parquet/arrow/writer.h>
#include <parquet/arrow/schema.h>
//#include <arrow/>
int main(int argc, char* argv[])
{
/*********************************
Create Parquet File
**********************************/
arrow::Status st;
arrow::MemoryPool* pool = arrow::default_memory_pool();
// Create Schema and fields with metadata
std::vector<std::shared_ptr<arrow::Field>> fields;
std::unordered_map<std::string, std::string> a_keyval;
a_keyval["unit"] = "sec";
a_keyval["note"] = "not the standard millisecond unit";
arrow::KeyValueMetadata a_md(a_keyval);
std::shared_ptr<arrow::Field> a_field = arrow::field("a", arrow::int16(), false, a_md.Copy());
fields.push_back(a_field);
std::unordered_map<std::string, std::string> b_keyval;
b_keyval["unit"] = "ft";
arrow::KeyValueMetadata b_md(b_keyval);
std::shared_ptr<arrow::Field> b_field = arrow::field("b", arrow::int16(), false, b_md.Copy());
fields.push_back(b_field);
std::shared_ptr<arrow::Schema> schema = arrow::schema(fields);
// Add metadata to schema.
std::unordered_map<std::string, std::string> schema_keyval;
schema_keyval["classification"] = "Type 0";
arrow::KeyValueMetadata schema_md(schema_keyval);
schema = schema->AddMetadata(schema_md.Copy());
// Build arrays of data and add to Table.
const int64_t rowgroup_size = 100;
std::vector<int16_t> a_data(rowgroup_size, 0);
std::vector<int16_t> b_data(rowgroup_size, 0);
for (int16_t i = 0; i < rowgroup_size; i++)
{
a_data[i] = i;
b_data[i] = rowgroup_size - i;
}
arrow::Int16Builder a_bldr(pool);
arrow::Int16Builder b_bldr(pool);
st = a_bldr.Resize(rowgroup_size);
if (!st.ok()) return 1;
st = b_bldr.Resize(rowgroup_size);
if (!st.ok()) return 1;
st = a_bldr.AppendValues(a_data);
if (!st.ok()) return 1;
st = b_bldr.AppendValues(b_data);
if (!st.ok()) return 1;
std::shared_ptr<arrow::Array> a_arr_ptr;
std::shared_ptr<arrow::Array> b_arr_ptr;
arrow::ArrayVector arr_vec;
st = a_bldr.Finish(&a_arr_ptr);
if (!st.ok()) return 1;
arr_vec.push_back(a_arr_ptr);
st = b_bldr.Finish(&b_arr_ptr);
if (!st.ok()) return 1;
arr_vec.push_back(b_arr_ptr);
std::shared_ptr<arrow::Table> table = arrow::Table::Make(schema, arr_vec);
// Test metadata
printf("\nMetadata from original schema:\n");
printf("%s\n", schema->metadata()->ToString().c_str());
printf("%s\n", schema->field(0)->metadata()->ToString().c_str());
printf("%s\n", schema->field(1)->metadata()->ToString().c_str());
std::shared_ptr<arrow::Schema> table_schema = table->schema();
printf("\nMetadata from schema retrieved from table (should be the same):\n");
printf("%s\n", table_schema->metadata()->ToString().c_str());
printf("%s\n", table_schema->field(0)->metadata()->ToString().c_str());
printf("%s\n", table_schema->field(1)->metadata()->ToString().c_str());
// Open file and write table.
std::string file_name = "test.parquet";
std::shared_ptr<arrow::io::FileOutputStream> ostream;
st = arrow::io::FileOutputStream::Open(file_name, &ostream);
if (!st.ok()) return 1;
std::unique_ptr<parquet::arrow::FileWriter> writer;
std::shared_ptr<parquet::WriterProperties> props = parquet::default_writer_properties();
st = parquet::arrow::FileWriter::Open(*schema, pool, ostream, props, &writer);
if (!st.ok()) return 1;
st = writer->WriteTable(*table, rowgroup_size);
if (!st.ok()) return 1;
// Close file and stream.
st = writer->Close();
if (!st.ok()) return 1;
st = ostream->Close();
if (!st.ok()) return 1;
/*********************************
Read Parquet File
**********************************/
// Create new memory pool. Not sure if this is necessary.
//arrow::MemoryPool* pool2 = arrow::default_memory_pool();
// Open file reader.
std::shared_ptr<arrow::io::ReadableFile> input_file;
st = arrow::io::ReadableFile::Open(file_name, pool, &input_file);
if (!st.ok()) return 1;
std::unique_ptr<parquet::arrow::FileReader> reader;
st = parquet::arrow::OpenFile(input_file, pool, &reader);
if (!st.ok()) return 1;
// Get schema and read metadata.
std::shared_ptr<arrow::Schema> new_schema;
st = reader->GetSchema(&new_schema);
if (!st.ok()) return 1;
printf("\nMetadata from schema read from file:\n");
printf("%s\n", new_schema->metadata()->ToString().c_str());
// Crashes because there are no metadata.
/*printf("%s\n", new_schema->field(0)->metadata()->ToString().c_str());
printf("%s\n", new_schema->field(1)->metadata()->ToString().c_str());*/
printf("field name %s metadata exists: %d\n", new_schema->field(0)->name().c_str(),
new_schema->field(0)->HasMetadata());
printf("field name %s metadata exists: %d\n", new_schema->field(1)->name().c_str(),
new_schema->field(1)->HasMetadata());
// What if I read the whole table and get the schema from it.
std::shared_ptr<arrow::Table> new_table;
st = reader->ReadTable(&new_table);
if (!st.ok()) return 1;
std::shared_ptr<arrow::Schema> schema_from_table = new_table->schema();
printf("\nMetadata from schema that is retrieved through table that is read from file:\n");
printf("%s\n", schema_from_table->metadata()->ToString().c_str());
// Crashes because there are no metadata.
/*printf("%s\n", schema_from_table->field(0)->metadata()->ToString().c_str());
printf("%s\n", schema_from_table->field(1)->metadata()->ToString().c_str());*/
printf("field name %s metadata exists: %d\n", schema_from_table->field(0)->name().c_str(),
schema_from_table->field(0)->HasMetadata());
printf("field name %s metadata exists: %d\n", schema_from_table->field(1)->name().c_str(),
schema_from_table->field(1)->HasMetadata());
st = input_file->Close();
if (!st.ok()) return 1;
return 0;
}
请注意,由于已知的Arrow问题导致无法写入字段元数据,因此不存在字段级元数据,请参见https://issues.apache.org/jira/browse/ARROW-4359。预期会出现带有键“分类”的文件级元数据。如何使用pyspark获取文件级元数据(在这种情况下,键为'classification'且值为'Type 0')?