我有3个这样的数据框,
df = pd.DataFrame([[1, 3], [2, 4], [3,6], [4,12], [5,18]], columns=['A', 'B'])
df2 = pd.DataFrame([[1, 5], [2, 6], [3,9]], columns=['A', 'C'])
df3 = pd.DataFrame([[4, 15, "hello"], [5, 19, "yes"]], columns=['A', 'C', 'D'])
它们看起来像这样, df
A B
0 1 3
1 2 4
2 3 6
3 4 12
4 5 18
df2
A C
0 1 5
1 2 6
2 3 9
df3
A C D
0 4 15 hello
1 5 19 yes
我合并,第一次合并
f_merge = pd.merge(df, df2, on='A',how='left')
第二次合并,({first_merge
与df3
)
s_merge = pd.merge(f_merge, df3, on='A', how='left')
我得到这样的输出
A B C_x C_y D
0 1 3 5.0 NaN NaN
1 2 4 6.0 NaN NaN
2 3 6 9.0 NaN NaN
3 4 12 NaN 15.0 hello
4 5 18 NaN 19.0 yes
我需要这样
A B C D
0 1 3 5.0 NaN
1 2 4 6.0 NaN
2 3 6 9.0 NaN
3 4 12 15.0 hello
4 5 18 19.0 yes
如何获得此输出?任何建议都会很棒。
答案 0 :(得分:3)
合并前先合并df2和df3。
new_df = pd.merge(df, pd.concat([df2, df3], ignore_index=True), on='A')
new_df
Out:
A B C D
0 1 3 5 NaN
1 2 4 6 NaN
2 3 6 9 NaN
3 4 12 15 hello
4 5 18 19 yes
答案 1 :(得分:2)
我们可以做combine_first
df.set_index('A',inplace=True)
df2.set_index('A').combine_first(df).combine_first(df3.set_index('A'))
B C D
A
1 3.0 5.0 NaN
2 4.0 6.0 NaN
3 6.0 9.0 NaN
4 12.0 15.0 hello
5 18.0 19.0 yes