如何从Watson语音转文本输出中重建对话?

时间:2019-10-09 13:21:23

标签: python pandas ibm-watson speech-to-text

我有Watson的语音转文本服务的JSON输出,我已将其转换为列表,然后转换为Pandas数据帧。

我正在尝试确定类似于以下内容的会话重建方法(按时):

发言人0:说了这一点[00.01-00.12]

发言人1:说[00.12-00.22]

发言人0:说了别的话[00.22-00.56]

我的数据框的每个单词都有一行,单词每个都有列,其开始/结束时间和扬声器标签(0或1)。

words = [['said', 0.01, 0.06, 0],['this', 0.06, 0.12, 0],['said', 0.12, 
0.15, 1],['that', 0.15, 0.22, 1],['said', 0.22, 0.31, 0],['something', 
0.31, 0.45, 0],['else', 0.45, 0.56, 0]]

理想情况下,我要创建的内容是以下内容:同一位演讲者说的话会归为一组,并在下一位演讲者进入时被打断:

grouped_words = [[['said','this'], 0.01, 0.12, 0],[['said','that'] 0.12, 
0.22, 1],[['said','something','else'] 0.22, 0.56, 0]

更新:根据请求,位于https://github.com/cookie1986/STT_test的指向所获取JSON文件示例的链接

1 个答案:

答案 0 :(得分:1)

将演讲者标签加载到Pandas Dataframe中很简单,可以很容易地看到图形,然后确定演讲者的班次。

speakers=pd.DataFrame(jsonconvo['speaker_labels']).loc[:,['from','speaker','to']]
convo=pd.DataFrame(jsonconvo['results'][0]['alternatives'][0]['timestamps'])
speakers=speakers.join(convo)

输出:

   from  speaker    to          0     1     2
0  0.01        0  0.06       said  0.01  0.06
1  0.06        0  0.12       this  0.06  0.12
2  0.12        1  0.15       said  0.12  0.15
3  0.15        1  0.22       that  0.15  0.22
4  0.22        0  0.31       said  0.22  0.31
5  0.31        0  0.45  something  0.31  0.45
6  0.45        0  0.56       else  0.45  0.56

从那里,您可以仅识别说话者的移动并快速循环折叠数据框

ChangeSpeaker=speakers.loc[speakers['speaker'].shift()!=speakers['speaker']].index

Transcript=pd.DataFrame(columns=['from','to','speaker','transcript'])
for counter in range(0,len(ChangeSpeaker)):
    print(counter)
    currentindex=ChangeSpeaker[counter]
    try:
        nextIndex=ChangeSpeaker[counter+1]-1
        temp=speakers.loc[currentindex:nextIndex,:]
    except:
        temp=speakers.loc[currentindex:,:]
Transcript=Transcript.append(pd.DataFrame([[temp.head(1)['from'].values[0],temp.tail(1)['to'].values[0],temp.head(1)['speaker'].values[0],temp[0].tolist()]],columns=['from','to','speaker','transcript']))

您要从临时数据帧中的第一个值(因此开头)开始,然后从最后一个vlaue结束。此外,要处理最后一个扬声器情况(通常会出现超出范围的错误),请使用try / catch。

输出:

   from    to speaker               transcript
0  0.01  0.12       0             [said, this]
0  0.12  0.22       1             [said, that]
0  0.22  0.56       0  [said, something, else]

此处有完整代码

import json
import pandas as pd

jsonconvo=json.loads("""{
   "results": [
      {
         "alternatives": [
            {
               "timestamps": [
                  [
                     "said", 
                     0.01, 
                     0.06
                  ], 
                  [
                     "this", 
                     0.06, 
                     0.12
                  ], 
                  [
                     "said", 
                     0.12, 
                     0.15
                  ], 
                  [
                     "that", 
                     0.15, 
                     0.22
                  ], 
                  [
                     "said", 
                     0.22, 
                     0.31
                  ], 
                  [
                     "something", 
                     0.31, 
                     0.45
                  ], 
                  [
                     "else", 
                     0.45, 
                     0.56
                  ]
               ], 
               "confidence": 0.85, 
               "transcript": "said this said that said something else "
            }
         ], 
         "final": true
      }
   ], 
   "result_index": 0, 
   "speaker_labels": [
      {
         "from": 0.01, 
         "to": 0.06, 
         "speaker": 0, 
         "confidence": 0.55, 
         "final": false
      }, 
      {
         "from": 0.06, 
         "to": 0.12, 
         "speaker": 0, 
         "confidence": 0.55, 
         "final": false
      }, 
      {
         "from": 0.12, 
         "to": 0.15, 
         "speaker": 1, 
         "confidence": 0.55, 
         "final": false
      }, 
      {
         "from": 0.15, 
         "to": 0.22, 
         "speaker": 1, 
         "confidence": 0.55, 
         "final": false
      }, 
      {
         "from": 0.22, 
         "to": 0.31, 
         "speaker": 0, 
         "confidence": 0.55, 
         "final": false
      }, 
      {
         "from": 0.31, 
         "to": 0.45, 
         "speaker": 0, 
         "confidence": 0.55, 
         "final": false
      }, 
      {
         "from": 0.45, 
         "to": 0.56, 
         "speaker": 0, 
         "confidence": 0.54, 
         "final": false
      }
   ]
}""")



speakers=pd.DataFrame(jsonconvo['speaker_labels']).loc[:,['from','speaker','to']]
convo=pd.DataFrame(jsonconvo['results'][0]['alternatives'][0]['timestamps'])
speakers=speakers.join(convo)

ChangeSpeaker=speakers.loc[speakers['speaker'].shift()!=speakers['speaker']].index


Transcript=pd.DataFrame(columns=['from','to','speaker','transcript'])
for counter in range(0,len(ChangeSpeaker)):
    print(counter)
    currentindex=ChangeSpeaker[counter]
    try:
        nextIndex=ChangeSpeaker[counter+1]-1
        temp=speakers.loc[currentindex:nextIndex,:]
    except:
        temp=speakers.loc[currentindex:,:]



    Transcript=Transcript.append(pd.DataFrame([[temp.head(1)['from'].values[0],temp.tail(1)['to'].values[0],temp.head(1)['speaker'].values[0],temp[0].tolist()]],columns=['from','to','speaker','transcript']))