根据熊猫数据框添加过滤器以散布图

时间:2019-10-05 17:43:59

标签: python dataframe scatter-plot

我假装用以下数据框的过滤器作散点图(代表整个赛季的球员,球队和赛季,并计算篮球队球员所给予的协助和不协助点) :

player          team_name       season          assisted    notassisted
A. DANRIDGE     NACIONAL        Season_17_18    130         445
A. DANRIDGE     NACIONAL        Season_18_19    132         382
D. ROBINSON     TROUVILLE       Season_18_19    89          286
D. DAVIS        AGUADA          Season_18_19    101         281
E. BATISTA      WELCOME         Season_17_18    148         278
F. MARTINEZ     GOES            Season_18_19    52          259
D. ALVAREZ      AGUADA          Season_17_18    114         246
M. HICKS        H. MACABI       Season_17_18    140         245

在x轴上,我想放置辅助点,在y轴上,我不想放置辅助点。但是我也想按赛季,球队和球员进行筛选,所以当我选择一个确定的球队球员时,我可以看到他们的得分以一种颜色显示,而其他的得分则显示为灰色,例如,如果我选择两个或更多个玩家我可以比较它们(用不同的颜色),其他点是可见的,但是是灰色的。另外,我想比较两个不同团队的球员以及过滤器的组合。

我正在学习数据科学,并通过图书馆的表述可以例如按团队制作散点图并进行过滤,并且我可以比较两个不同的团队(或季节或球员)。

但是我无法以一种奇特的方式添加多个过滤器,而且我也不知道如何显示所选的并将其他滤色器显示为灰色(而不会消失)。

代码如下:

import plotly.express as px

fig = px.scatter(pointsperplayer, x='assisted', y='notassisted', hover_name='player', 
                 hover_data=['team_name','season'], color='season')
fig.show()

图形结果如下:

Scatter plot resultant

总而言之,我希望拥有三个过滤器,一个用于赛季,另一个用于团队,另一个用于球员,以便能够在每个过滤器中进行多种选择,并获得不同的颜色,其余的点则变为灰色因此我可以将结果与其余结果进行比较,我不确定是否可以使用plotly express或是否应该使用其他库。

1 个答案:

答案 0 :(得分:0)

因此,我无法操作图例,但可以通过找到here的下拉小部件添加过滤器。根据您的IDE,您可能需要使用Jupyter才能使小部件正常工作。我遇到了VSCode无法显示小部件的问题。我下面的功能是可以按球队名称,赛季或球员筛选并比较该筛选器中的两个选项。希望可以扩展以满足您的需求。

import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import ipywidgets as ipy
from ipywidgets import Output, VBox, widgets


# First gather the data I need and choose the display colors
playerData = pd.read_csv("playerData.csv")
teamNames = list(playerData['team_name'].unique().tolist());
seasons = list(playerData['season'].unique().tolist());
players = list(playerData['player'].unique().tolist());
color1 = 'red'
color2 = 'blue'
color3 = 'gray'

# This creates the initial figure.
# Note that px.scatter generates multiple scatter plot 'traces'. Each trace contains 
# the data points associated with 1 team/season/player depending on what the property
# of 'color' is set to.
trace1 = px.scatter(playerData, x='assisted', y='notassisted', color='team_name')
fig = go.FigureWidget(trace1)

# Create all our drop down widgets
filterDrop = widgets.Dropdown(
    description='Filter:',
    value='team_name',
    options=['team_name', 'season','player']  
)
teamDrop1 = widgets.Dropdown(
    description='Team Name:',
    value='NACIONAL',
    options=list(playerData['team_name'].unique().tolist())  
)
teamDrop2 = widgets.Dropdown(
    description='Team Name:',
    value='NACIONAL',
    options=list(playerData['team_name'].unique().tolist())  
)
playerDrop1 = widgets.Dropdown(
    description='Player:',
    value='A. DANRIDGE',
    options=list(playerData['player'].unique().tolist())  
)
playerDrop2 = widgets.Dropdown(
    description='Player:',
    value='A. DANRIDGE',
    options=list(playerData['player'].unique().tolist())  
)
seasonDrop1 = widgets.Dropdown(
    description='Season:',
    value='Season_17_18',
    options=list(playerData['season'].unique().tolist())  
)
seasonDrop2 = widgets.Dropdown(
    description='Season:',
    value='Season_17_18',
    options=list(playerData['season'].unique().tolist())  
)

# This will be called when the filter dropdown changes. 
def filterResponse(change):
    # generate the new traces that are filtered by teamname, season, or player
    tempTrace = px.scatter(playerData, x='assisted', y='notassisted', color=filterDrop.value)
    with fig.batch_update():
        # Delete the old traces and add the new traces in one at a time
        fig.data = []
        for tr in tempTrace.data:
            fig.add_scatter(x = tr.x, y = tr.y, hoverlabel = tr.hoverlabel, hovertemplate = tr.hovertemplate, \
                           legendgroup = tr.legendgroup, marker = tr.marker, mode = tr.mode, name = tr.name)
    # Call response so that it will color the markers appropriately
    response(change)

# This is called by all the other drop downs
def response(change):
    # colorList is a list of strings the length of the # of traces 
    if filterDrop.value == 'team_name':
        colorList = [color1 if x == teamDrop1.value else color2 if x == teamDrop2.value else color3 for x in teamNames]
    elif filterDrop.value == 'season':
        colorList = [color1 if x == seasonDrop1.value else color2 if x == seasonDrop2.value else color3 for x in seasons]
    else:
        colorList = [color1 if x == playerDrop1.value else color2 if x == playerDrop2.value else color3 for x in players]
    with fig.batch_update():
        # Color each trace according to our chosen comparison traces
        for i in range(len(colorList)):
            fig.data[i].marker.color = colorList[i]

# These determine what function should be called when a drop down changes
teamDrop1.observe(response, names="value")
seasonDrop1.observe(response, names="value")
playerDrop1.observe(response, names="value")
teamDrop2.observe(response, names="value")
seasonDrop2.observe(response, names="value")
playerDrop2.observe(response, names="value")
filterDrop.observe(filterResponse, names="value")

# HBox and VBox are used to organize the other widgets and figures
container1 = widgets.HBox([filterDrop]) 
container2 = widgets.HBox([teamDrop1, seasonDrop1, playerDrop1])
container3 = widgets.HBox([teamDrop2, seasonDrop2, playerDrop2])
widgets.VBox([container1, container2, container3, fig])

结果如下:enter image description here