从决策树回归器拟合训练数据会导致崩溃

时间:2019-10-04 03:56:36

标签: python apache-spark pyspark

尝试在一些训练数据上实现决策树回归算法,但是当我调用fit()时遇到错误。

backchannel

产生错误

    (trainingData, testData) = data.randomSplit([0.7, 0.3])

    vecAssembler = VectorAssembler(inputCols=["_1", "_2", "_3", "_4", "_5", "_6", "_7", "_8", "_9", "_10"], outputCol="features")

    dt = DecisionTreeRegressor(featuresCol="features", labelCol="_11")

    dt_model = dt.fit(trainingData)

但是数据结构完全相同。

1 个答案:

答案 0 :(得分:0)

您缺少两个步骤。 1.转换部分,以及2.从转换后的数据中选择特征和标签。我假设数据只包含数字数据,即没有分类数据。我将写下使用pyspark.ml来帮助您的模型训练的一般流程。

from pyspark.ml.feature
from pyspark.ml.classification import DecisionTreeClassifier

#date processing part

vecAssembler = VectorAssembler(input_cols=['col_1','col_2',...,'col_10'],outputCol='features')

#you missed these two steps
trans_data = vecAssembler.transform(data)

final_data = trans_data.select('features','col_11') #your label column name is col_11

train_data, test_data = final_data.randomSplit([0.7,0.3])

#ml part

dt = DecisionTreeClassifier(featuresCol='features',labelCol='col_11')

dt_model = dt.fit(train_data)

dt_predictions = dt_model.transform(test_data)

#proceed with the model evaluation part after this