点燃性能:如何调整缓存写入性能以点燃瘦客户端?

时间:2019-10-03 14:16:29

标签: java ignite

我正在做一个简单的POC,以便在客户端服务器模式下编写大量条目来点燃缓存,这在测试过程中会在下面观察到;

1)如果瘦客户机和服务器位于同一主机上,则大约需要10分钟才能将一百万个条目持久保存到两个缓存中。

2)如果瘦客户机和服务器位于不同的主机上,则大约需要4分钟才能将500个条目持久保存到两个缓存中。

即使考虑到一些网络延迟,我也无法证明case2(我们要采用的实现方式)中的这种显着延迟。我想知道这是否与我的缓存配置有关,如下所示?

<bean id="grid.cfg" class="org.apache.ignite.configuration.IgniteConfiguration">

    <property name="workDirectory" value="/path/"/>

    <property name="activeOnStart" value="true"/>

    <property name="autoActivationEnabled" value="true"/>

    <property name="deploymentMode" value="SHARED"/>

    <property name="igniteInstanceName" value="test"/>

    <property name="dataStorageConfiguration">
        <bean class="org.apache.ignite.configuration.DataStorageConfiguration">
            <property name="defaultDataRegionConfiguration">
                <bean class="org.apache.ignite.configuration.DataRegionConfiguration">
                    <property name="persistenceEnabled" value="true"/>
                </bean>
            </property>
            <property name="storagePath" value="/path/"/>
        </bean>
    </property>

    <!--
        For better performance set this property to false in case
        peer deployment is not used.
        Default value is true.
    -->
    <property name="peerClassLoadingEnabled" value="false"/>


    <property name="cacheConfiguration">
        <!--
            Specify list of cache configurations here. Any property from
            CacheConfiguration interface can be configured here.
            Note that absolutely all configuration properties are optional.
        -->
        <list>

            <bean parent="cache-template">
                <!-- Cache name is 'testcache1'. -->
                <property name="name" value="testcache1"/>
            </bean>

            <bean parent="cache-template">
                <!-- Cache name is 'testcache2'. -->
                <property name="name" value="testcache2"/>
            </bean>

        </list>
    </property>

</bean>

<!-- Template for all example cache configurations. -->
<bean id="cache-template" abstract="true" class="org.apache.ignite.configuration.CacheConfiguration">
    <!-- REPLICATED cache mode. -->
    <property name="cacheMode" value="REPLICATED"/>

    <!-- Set synchronous rebalancing (default is asynchronous). -->
    <property name="rebalanceMode" value="SYNC"/>

    <!-- Set to FULL_SYNC for examples, default is PRIMARY_SYNC. -->
    <property name="writeSynchronizationMode" value="FULL_SYNC"/>

    <property name="atomicityMode" value="TRANSACTIONAL"/>
</bean>

瘦客户端代码:

公共类IgniteDataGridApplication {

static DateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS");

private ClientCache<String, String> testcache1;
private ClientCache<String, String> testcache2;



public IgniteDataGridApplication() {
    ClientConfiguration cfg = new ClientConfiguration().setAddresses("serverhostname.net:10800");
    IgniteClient ignite = Ignition.startClient(cfg);
    testcache1 = ignite.cache("testcache1");
    testcache2 = ignite.cache("testcache2");
}

public static void main(String[] args) throws Exception {
    IgniteDataGridApplication igniteDataGridApplication = new IgniteDataGridApplication();
    igniteDataGridApplication.load();
}

private void load() throws Exception {
    List<ThreadProducer> cacheMessages = new ArrayList<>();
    for (int i = 1; i <= 1000000; i++) {
        String testentry = i+"";
        cacheMessages.add(new ThreadProducer("testKey" + i, testentry));

    }
    ExecutorService executorService = Executors.newFixedThreadPool(1000);
    cacheMessages.forEach(executorService::submit);
    executorService.shutdown();
    executorService.awaitTermination(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
}


class ThreadProducer implements Runnable {
    private String String;
    private String key;

    public ThreadProducer(String key, String String) {
        this.key = key;
        this.String = String;
    }

    public void run() {
        testcache1.putIfAbsent(key, String);
        testcache2.putIfAbsent(key, String);
        System.out.println("entry :: " + key + " :: " + sdf.format(Calendar.getInstance().getTime()));
    }
}

}

1 个答案:

答案 0 :(得分:0)

尝试使用JFR,JProfiler或您选择的其他探查器对服务器节点和瘦客户机进行性能分析,以发现减慢操作速度的瓶颈。

确保在两种情况下,baseline topology中存在相同数量的节点。如果基线拓扑配置不正确,则只能将数据加载到其中一个节点上。

您可以尝试使用批量加载数据的API方法来提高性能。 ClientCache#putAll()是这种方法之一。