我的数据不平衡,M的百分比为80%,F的百分比为20%。下面是数据示例:
Loop over the line one char at a time
if in a word
if a word character
add the character to current word
if a separator
end the current word with a null
if in separators
if a word character
add a new word and make it the current word
add the character to that word
if in a word
end the word with a null character
所以我想使用NAME COUNTRY HEIGHT HANDPHONE TYPE GENDER
NOVI USA 160 samsung SM-G610F F
JOHN JAPAN 181 vivo 1718 M
RICHARD UK 175 samsung SM-G532G M
ANTHONY UK 179 OPPO F1fw M
SAMUEL UK 185 Iphone 8 plus M
BUNGA KOREA 170 Iphone 6s F
来平衡M:F的百分比为50%:50%的数据。我已经尝试过以下脚本:
SMOTENC
但我越来越出错了:
import numpy as np
import pandas as pd
import scipy.stats as stats
import sklearn
import keras
import imblearn
import matplotlib.pyplot as plt
import seaborn as sns
plt.style.use('ggplot')
df=pd.read_excel('Data for oversampling.xlsx')
Data = df
Data.GENDER.replace({'M':0,'F':1},inplace=True)
sns.countplot('GENDER', data = Data)
y = Data.GENDER
x = Data.drop('GENDER', axis=1)
from imblearn.over_sampling import SMOTENC
smote_nc = SMOTENC(categorical_features=[0,3], random_state=0)
x_resampled, y_resampled = smote_nc.fit_resample(x, y)
有人可以帮忙吗?
答案 0 :(得分:0)
在数据集中,除要素2(唯一的非分类)外,所有要素都是分类的。您需要更新categorical_features列表。