我有一个如下数据框
from pyspark import SparkContext, SparkConf,SQLContext
import numpy as np
config = SparkConf("local")
sc = SparkContext(conf=config)
sqlContext=SQLContext(sc)
df = sqlContext.createDataFrame([("doc_3",1,3,9), ("doc_1",9,6,0), ("doc_2",9,9,3) ]).withColumnRenamed("_1","doc").withColumnRenamed("_2","word1").withColumnRenamed("_3","word2").withColumnRenamed("_4","word3")
现在我需要将第一列和其余列保留为一个numpy数组(两列:“ doc”和一个numpy array列)
我知道
sdf=np.array(df.select([c for c in df.columns if c not in {'doc'}]).collect())
print sdf
将所有列转换为numpy数组,但是如何将numpy数组附加到第一列?任何帮助表示赞赏。
答案 0 :(得分:1)
不幸的是,您无法在pyspark数据框中创建numpy.array
列,但可以改用常规的python
列表,并在阅读时进行转换:
>>> df = sqlContext.createDataFrame([("doc_3",[1,3,9]), ("doc_1",[9,6,0]), ("doc_2",[9,9,3]) ]).withColumnRenamed("_1","doc").withColumnRenamed("_2","words")
>>> df.show()
+-----+---------+
| doc| words|
+-----+---------+
|doc_3|[1, 3, 9]|
|doc_1|[9, 6, 0]|
|doc_2|[9, 9, 3]|
+-----+---------+
>>> df
DataFrame[doc: string, words: array<bigint>]
要从您拥有的4列中获取此信息,您可以:
>>> from pyspark.sql.functions import *
>>> df2=df.select("doc", array("word1", "word2", "word3").alias("words"))
>>> df2
DataFrame[doc: string, words: array<bigint>]
>>> df2.show()
+-----+---------+
| doc| words|
+-----+---------+
|doc_3|[1, 3, 9]|
|doc_1|[9, 6, 0]|
|doc_2|[9, 9, 3]|
+-----+---------+