我想使用Tensorflow和tensorboard V2在同一图上合并精度和召回率。我发现了许多先前版本的示例,但在我的情况下,这些示例均无用。
我创建了一个Keras回调来计算精度和调用率,然后调用一个tensorflow摘要以将它们记录在同一记录器中。我可以在Tensorboard中可视化它们,但是在2个单独的图中。
Class ClassificationReport(Callback):
def __init__(self, data_generator, steps, label_names, log_directory):
"""
Instantiator
:param data_generator: the data generator that produces the input data
:param steps: int, batch size
:param data_type, string, 'training', 'validation' or 'test', used a prefix in the logs
:param log_directory: pathlib2 path to the TensorBoard log directory
"""
self.data_generator = data_generator
self.steps = steps
self.data_type = data_type
self.logger = tensorflow.summary.create_file_writer(str(log_directory / self.data_type))
# names of the scalar to consider in the sklearn classification report
self._scalar_names = ['precision', 'recall']
def on_epoch_end(self, epoch, logs={}):
"""
log the precision and recall
:param epoch: int, number of epochs
:param logs: the Keras dictionary where the metrics are stored
"""
y_true = numpy.zeros(self.steps)
y_predicted = numpy.zeros(self.steps)
...Here I fetch y_true and y_predicted with the data_generator
# The current report is calculated by SciKit-Learn
current_report = classification_report(y_true, y_predicted, output_dict=True)
with self.logger.as_default():
for scalar_name in self._scalar_names:
tensorflow.summary.scalar(
name="{} / macro average / {}".format(self.data_type, scalar_name),
data=current_report['macro avg'][scalar_name],
step=epoch)
return super().on_epoch_end(epoch, logs)
就我理解Tensorboard 2逻辑而言,似乎不可能在同一图上绘制2个标量汇总...在此阶段欢迎提出任何建议。
答案 0 :(得分:0)
使用两个具有相同标量摘要名称的不同编写器。
import numpy as np
import tensorflow as tf
logger1 = tf.summary.create_file_writer('logs/scalar/precision')
logger2 = tf.summary.create_file_writer('logs/scalar/recall')
precision = np.random.uniform(size=10)
recall = np.random.uniform(size=10)
for i in range(10):
with logger1.as_default():
tf.summary.scalar(name='precision-recall', data=precision[i], step=i)
with logger2.as_default():
tf.summary.scalar(name='precision-recall', data=recall[i], step=i)
tensorboard --logdir日志/标量