在我的文件中,一列包含不同的成绩(列名称='成绩)。
例如:91 50K,92 60K,DIESEL,ADBlU等。
对于所有这些年级,我需要将其分类为几个年级;
例如: 91 50K= Petrol
在我的python中,我该怎么做?请注意,我可以将整个列传递给函数。但是函数必须用正确的值重写每一行的值;
def checkgrades(data):
df['Grades']=???
???
按照下面的答案,我尝试;
df_dips=map_dips_grades(df_dips)
df_sales = df_sales.merge(df_dips, left_on=['Site Name', 'Date','GradeNo'],
right_on=['Site', 'Dip Time', 'Product'], how='left').fillna(0)
def map_dips_grades(data):
d1 = {'Diesel': ['DIESEL', 'DIESEL 1'],
'Unleaded': ['91','91 UNLEADED'],
'PULP':['95','95 ULP'],
'PULP98':['98','98 20K'],
'Vortex Diesel':['DIESEL ULT R'],
'Adblue':['ADBLU','ADO']}
d = {k: oldk for oldk, oldv in d1.items() for k in oldv}
data['Product'].map(d)
return data
但是我明白了
ValueError: You are trying to merge on int64 and object columns. If you wish to proceed you should use pd.concat
答案 0 :(得分:2)
您可以尝试将字典与map()函数一起使用。像这样:
dict = {'91 50K': 'Petrol', .........}
df['Grades'] = df['Grades'].map(dict)
答案 1 :(得分:1)
您可以先在Grades
,然后在Series.map
中创建所有可能值的字典:
#test all possible unique values
print (df['Grades'].unique())
d = {'91 50K':'Petrol','92 60K':'Petrol','DIESEL':'Diesel',...}
df['Grades'] = df['Grades'].map(d)
另一种可能减少打字的字典是列表字典:
d1 = {'Petrol':['91 50K','92 60K'],
'Diesel':['DIESEL']}
#swap key values in dict
#http://stackoverflow.com/a/31674731/2901002
d = {k: oldk for oldk, oldv in d1.items() for k in oldv}
print (d)
{'91 50K': 'Petrol', '92 60K': 'Petrol', 'DIESEL': 'Diesel'}
df['Grades'] = df['Grades'].map(d)