我具有如下所示的示例数据,我将需要使用Spark Scala代码将列(ABS,ALT)从字符串转换为Array [structType]。任何帮助将非常感激。
在UDF的帮助下,我能够从字符串转换为arrayType,但是在这两个列(ABS,ALT)从字符串转换为Array [structType]时需要一些帮助。
VIN TT MSG_TYPE ABS ALT
MSGXXXXXXXX 1 SIGL [{"E":1569XXXXXXX,"V":0.0}]
[{"E":156957XXXXXX,"V":0.0}]
df.currentSchema
root
|-- VIN: string (nullable = true)
|-- TT: long (nullable = true)
|-- MSG_TYPE: string (nullable = true)
|-- ABS: string (nullable = true)
|-- ALT: string (nullable = true)
df.expectedSchema:
|-- VIN: string (nullable = true)
|-- TT: long (nullable = true)
|-- MSG_TYPE: string (nullable = true)
|-- ABS: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- E: long (nullable = true)
| | |-- V: long (nullable = true)
|-- ALT: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- E: long (nullable = true)
| | |-- V: double (nullable = true)
答案 0 :(得分:1)
您可以使用udf来解析Json并将其转换为结构数组。
首先,定义一个解析Json的函数(基于this答案):
case class Data(E:String, V:Double)
class CC[T] extends Serializable { def unapply(a: Any): Option[T] = Some(a.asInstanceOf[T]) }
object M extends CC[Map[String, Any]]
object L extends CC[List[Any]]
object S extends CC[String]
object D extends CC[Double]
def toStruct(in: String): Array[Data] = {
if( in == null || in.isEmpty) return new Array[Data](0)
val result = for {
Some(L(map)) <- List(JSON.parseFull(in))
M(data) <- map
S(e) = data("E")
D(v) = data("V")
} yield {
Data(e, v)
}
result.toArray
}
此函数返回Data
对象的数组,这些对象已经具有正确的结构。现在我们使用此函数定义udf
val ts: String => Array[Data] = toStruct(_)
import org.apache.spark.sql.functions.udf
val toStructUdf = udf(ts)
最后,我们调用udf(例如,在select
语句中):
val df = ...
val newdf = df.select('VIN, 'TT, 'MSG_TYPE, toStructUdf('ABS).as("ABS"), toStructUdf('ALT).as("ALT"))
newdf.printSchema()
输出:
root
|-- VIN: string (nullable = true)
|-- TT: string (nullable = true)
|-- MSG_TYPE: string (nullable = true)
|-- ABS: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- E: string (nullable = true)
| | |-- V: double (nullable = false)
|-- ALT: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- E: string (nullable = true)
| | |-- V: double (nullable = false)
答案 1 :(得分:1)
如果您尝试以下操作,它也将起作用:
import org.apache.spark.sql.types.{StructField, StructType, ArrayType, StringType}
val schema = ArrayType(StructType(Seq(StructField("E", LongType), StructField("V", DoubleType))))
val final_df = newDF.withColumn("ABS", from_json($"ABS", schema)).withColumn("ALT", from_json($"ALT", schema))
final_df.printSchema:
root
|-- VIN: string (nullable = true)
|-- TT: string (nullable = true)
|-- MSG_TYPE: string (nullable = true)
|-- ABS: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- E: long (nullable = true)
| | |-- V: double (nullable = false)
|-- ALT: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- E: long (nullable = true)
| | |-- V: double (nullable = false)