这个使用GEKKO(油门踏板运动与汽车速度相关)的模型预测控制(MPC)示例未明确说明成本函数以最小化:
from gekko import GEKKO
import numpy as np
import matplotlib.pyplot as plt
m = GEKKO()
m.time = np.linspace(0,20,41)
# Parameters
mass = 500
b = m.Param(value=50)
K = m.Param(value=0.8)
# Manipulated variable
p = m.MV(value=0, lb=0, ub=100)
p.STATUS = 1 # allow optimizer to change
p.DCOST = 0.1 # smooth out gas pedal movement
p.DMAX = 20 # slow down change of gas pedal
# Controlled Variable
v = m.CV(value=0)
v.STATUS = 1 # add the SP to the objective
m.options.CV_TYPE = 2 # squared error
v.SP = 40 # set point
v.TR_INIT = 1 # set point trajectory
v.TAU = 5 # time constant of trajectory
# Process model
m.Equation(mass*v.dt() == -v*b + K*b*p)
m.options.IMODE = 6 # control
m.solve(disp=False)
# get additional solution information
import json
with open(m.path+'//results.json') as f:
results = json.load(f)
plt.figure()
plt.subplot(2,1,1)
plt.plot(m.time,p.value,'b-',label='MV Optimized')
plt.legend()
plt.ylabel('Input')
plt.subplot(2,1,2)
plt.plot(m.time,results['v1.tr'],'k-',label='Reference Trajectory')
plt.plot(m.time,v.value,'r--',label='CV Response')
plt.ylabel('Output')
plt.xlabel('Time')
plt.legend(loc='best')
plt.show()
有人可以给我一个代数表达式,说明GEKKO在默认情况下会针对此问题最小化哪些成本函数吗?
答案 0 :(得分:3)
在'CV_TYPE = 2'的情况下,您的成本函数将是您定义的整个水平长度(m.time)中设定值与预测CV值之间的平方误差之和。
请参见以下链接,了解MPC目标函数的平方误差形式和L1(CV_TYPE = 1)形式的详细方程式。
http://apmonitor.com/do/index.php/Main/ControllerObjective
俊浩