我有以下代码行:
# Setting the values for the number of folds
num_folds = 10
seed = 7
# Separating data into folds
kfold = KFold(num_folds, True, random_state = seed)
# Create the unit model (classificador fraco)
cart = DecisionTreeClassifier()
# Setting the number of trees
num_trees = 100
# Creating the bagging model
model = BaggingClassifier(base_estimator = cart, n_estimators = num_trees, random_state = seed)
# Cross Validation
resultado = cross_val_score(model, X, Y, cv = kfold)
# Result print
print("Acurácia: %.3f" % (resultado.mean() * 100))
这是我从互联网上获得的现成代码,显然是预先定义的,用于测试我的交叉验证的TRAINING数据并了解装袋算法的准确性。
我想知道是否可以将其应用于我的TEST数据(没有输出“ Y”的数据)
代码有点混乱,我无法建模。
我正在寻找类似的东西
# Training the model
model.fit(X, Y)
# Making predictions
Y_pred = model.predict(X_test)
我想在测试数据中的训练数据之上使用经过训练的装袋模型并做出预测,但我不知道如何修改代码
答案 0 :(得分:0)
您已经具备了预测新数据的一切能力。我提供了一个带有玩具数据和注释的小例子,以使其清楚。
from sklearn.ensemble import BaggingClassifier
cart = BaggingClassifier()
X_train = [[0, 0], [1, 1]] # training data
Y_train = [0, 1] # training labels
cart.fit(X_train, Y_train) # model is trained
y_pred = cart.predict([ [0,1] ]) # new data
print(y_pred)
# prints [0], so it predicts the new sample (0,1) as 0 class