在此之前,我一直在使用“ For循环”。但是变量通常是k,它表示行号。
示例:
for (k in 1:n) {
expression
}
我的问题是,该变量是否可能是某个列? 示例:
for ("column no" in 1:n) {
expression
}
我经历了几次试验和错误,现在有点卡住了。这是我的数据:
date mold no
22-May 1.35436 1
23-May 0.88592 1
24-May 0.81316 1
25-May 0.80856 1
26-May 0.84646 1
27-May 0.81762 1
28-May 0.79828 1
03-Jan 1.09158 2
04-Jan 0.86661 2
05-Jan 0.81908 2
06-Jan 0.7555 2
07-Jan 0.66577 2
08-Jan 0.66706 2
09-Jan 0.67133 2
05-Feb 20.4366 3
06-Feb 5.77923 3
06-Feb 3.12323 3
05-Feb 2.25436 3
06-Feb 1.74551 3
06-Feb 1.52744 3
05-Feb 1.45483 3
28-Jul 1.55148 4
29-Jul 1.18882 4
30-Jul 1.10595 4
31-Jul 1.14101 4
01-Aug 1.1453 4
02-Aug 1.10113 4
03-Aug 1.09152 4
30-Nov 8.3254 5
01-Dec 4.03003 5
02-Dec 2.18026 5
03-Dec 1.40028 5
04-Dec 1.02901 5
05-Dec 0.85859 5
06-Dec 0.7776 5
我想作为R对mold
列中每个组(1到5)的no
列中的值求和。例如,对于no = 1,它将是
1.35436 + 0.88592 + 0.81316 + 0.80856 + 0.84646 + 0.81762 + 0.79828 = 6.32436
然后重复no = 2、3、4等
答案 0 :(得分:1)
我们可以遍历唯一元素,比较(==
)并获得与布尔向量相对应的'mold'元素的sum
un1 <- unique(df1$no)
v1 <- numeric(length(un1))
for(i in seq_along(v1)) v1[i] <- sum(df1$mold[df1$no== un1[i]])
v1
#[1] 6.32436 5.53693 36.32120 8.32521 18.60117
它与rowsum
rowsum(df1$mold, df1$no)[,1]
# 1 2 3 4 5
# 6.32436 5.53693 36.32120 8.32521 18.60117
df1 <- structure(list(date = c("22-May", "23-May", "24-May", "25-May",
"26-May", "27-May", "28-May", "03-Jan", "04-Jan", "05-Jan", "06-Jan",
"07-Jan", "08-Jan", "09-Jan", "05-Feb", "06-Feb", "06-Feb", "05-Feb",
"06-Feb", "06-Feb", "05-Feb", "28-Jul", "29-Jul", "30-Jul", "31-Jul",
"01-Aug", "02-Aug", "03-Aug", "30-Nov", "01-Dec", "02-Dec", "03-Dec",
"04-Dec", "05-Dec", "06-Dec"), mold = c(1.35436, 0.88592, 0.81316,
0.80856, 0.84646, 0.81762, 0.79828, 1.09158, 0.86661, 0.81908,
0.7555, 0.66577, 0.66706, 0.67133, 20.4366, 5.77923, 3.12323,
2.25436, 1.74551, 1.52744, 1.45483, 1.55148, 1.18882, 1.10595,
1.14101, 1.1453, 1.10113, 1.09152, 8.3254, 4.03003, 2.18026,
1.40028, 1.02901, 0.85859, 0.7776), no = c(1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L)),
class = "data.frame", row.names = c(NA,
-35L))