我有一个df
,其中有很多丢失的数据,但实际上是相同的列(源自合并数据集)。例如,请考虑以下内容:
temp = pd.DataFrame({"fruit_1": ["apple", "pear", "don't want to tell", np.nan, np.nan, np.nan],
"fruit_2": [np.nan, np.nan, "don't want to tell", "apple", "don't want to tell", np.nan],
"fruit_3": ["apple", np.nan, "pear", "don't want to tell", np.nan, "pear"]})
我现在想将它们合并为一列;冲突应按以下方式解决:
我尝试创建一个新列并使用apply
(请参见下文)。
temp.insert(0, "fruit", np.nan)
temp['fruit'].apply(lambda row: row["fruit"] if np.isnan(row["fruit"]) and not np.isnan(row["fruit_1"]) else np.nan) # map col
但是,代码会产生一个TypeError: 'float' object is not subscriptable
有人可以告诉我(1)这通常是否可行-如果是,我的错误是什么?并且(2)最有效的方法是什么?
非常感谢。
**编辑** 预期的输出是
fruit
0 apple
1 pear
2 pear
3 apple
4 don't want to tell
5 pear
答案 0 :(得分:3)
带有ffill
和附加的np.where
s=temp.mask(temp=="don't want to tell").bfill(1).iloc[:,0]
s=np.where((temp=="don't want to tell").any(1)&s.isnull(),"don't want to tell",s)
s
Out[17]:
array(['apple', 'pear', 'pear', 'apple', "don't want to tell", 'pear'],
dtype=object)
temp['New']=s
temp
Out[19]:
fruit_1 ... New
0 apple ... apple
1 pear ... pear
2 don't want to tell ... pear
3 NaN ... apple
4 NaN ... don't want to tell
5 NaN ... pear
[6 rows x 4 columns]