我有一个未排序的矩形列表(描述为左下和右上坐标对)。我正在寻找一种有效的算法来通过替换相邻或重叠的bbox来压缩这个列表。
这是我的代码,我沿垂直轴排序所有bbox,尝试沿水平轴压缩和排序结果并再次压缩。这不是最理想的但足够快。
(** boundingbox, (x0,y0) means left down, (x1,y1) right upper edge *)
type bbox_t = { x0 : int; y0 : int; x1 : int; y1 : int; }
let _test_if_compressable a b =
assert(a.x0 >= 0);
assert(a.y0 >= 0);
assert(b.x0 >= 0);
assert(b.y0 >= 0);
assert(a.x1 >= a.x0);
assert(a.y1 >= a.y0);
assert(b.x1 >= b.x0);
assert(b.y1 >= b.y0);
let same_x_ab = (a.x0 == b.x0) && (a.x1 == b.x1) in
let same_y_ab = (a.y0 == b.y0) && (a.y1 == b.y1) in
(same_x_ab && same_y_ab) ||
(same_x_ab && (a.y1 >= (b.y0-1)) && (a.y0 <= b.y0)) ||
(same_x_ab && (b.y1 >= (a.y0-1)) && (b.y0 <= a.y0)) ||
(same_y_ab && (a.x1 >= (b.x0-1)) && (a.x0 <= b.x0)) ||
(same_y_ab && (b.x1 >= (a.x0-1)) && (b.x0 <= a.x0))
;;
(* compresses list of bboxes by joining bboxes of same dimension
* @param sort1 primary sorting function (hsort)
* @param sort2 secondary sorting function (vsort)
* @param bboxlst list of bboxes
* @return list of bboxes
*)
let compress_bboxes sort1 sort2 bboxlst =
let rec compr lst newlst =
let _calc_new bbox1 bbox2 =
let miny = min bbox1.y0 bbox2.y0
and maxy = max bbox1.y1 bbox2.y1
and minx = min bbox1.x0 bbox2.x0
and maxx = max bbox1.x1 bbox2.x1
in
{x0=minx; y0=miny; x1=maxx; y1=maxy}
in
match lst with
[] -> List.rev newlst
| hd::[] -> List.rev (hd::newlst)
| hd1::hd2::tl when hd1 = hd2 -> compr tl (hd1::newlst)
| hd1::hd2::tl when _test_if_compressable hd1 hd2 -> let b = _calc_new hd1 hd2 in compr tl (b::newlst)
| hd1::hd2::tl ->
compr (hd2::tl) (hd1::newlst)
in
let newxlst = compr (sort1 bboxlst) [] in
let newylst = compr (sort2 newxlst) [] in
newylst
;;
另一种解决方案是贪婪的,但非常低:
let first_partition e lst =
let rec _first_partition accu =
function
[] -> None
| hd::tl when not (_test_if_compressable hd e) ->
_first_partition (hd::accu) tl
| hd::tl -> Some (hd, (List.rev_append accu tl))
in
_first_partition [] lst
in
let rec _compr accu =
function
[] -> List.rev accu
| hd::tl ->
match (first_partition hd tl) with
None -> _compr (hd::accu) tl
| Some (c,r) -> let newbbox = get_surrounding_bbox [c;hd] in
_compr (newbbox::accu) r
in
_compr [] lst (* call this repeately to improve compression *)
您还有其他提示吗?该算法不能完美压缩,但应该快速并减小结果矩形(bbox)的大小。有人可以帮忙吗?
答案 0 :(得分:4)
我会考虑使用kd tree。基本上,您构建了一个二叉树,在每个级别上,您可以在一个点上拆分平面。无论您是沿x方向还是y方向分开,都可以交替使用。
如果使用左下角坐标作为关键点,则给定节点中矩形可以包含的唯一矩形是右子树中的矩形。
编辑:实际上这可能不是那样的。一个矩形可能包含在其左子树中的矩形中。
在午休期间,我快速实施了一棵kd树。它的运行时间与您的第一个功能相当,但似乎可以获得更好的效果。我没有检查它的正确性(虽然我使用相同的测试并压缩你正在使用的代码),但是在100000个随机矩形上(x,y值从(0,0)到(99,99) )kd树方法将其压缩为47539个,而排序列表方法将其降低到68393. kd树略慢,特别是在较小的输入上(100个rects需要两倍长,100,000个则只有4%慢)这是我的代码:
type 'a kdtree = Empty | Node of 'a kdtree * 'a * 'a kdtree
let rect_comp d a b =
if d mod 2 = 0 then
a.x0 < b.x0
else
a.y0 < b.y0
let kd_of_list l =
let rec kdl n = function [] -> Empty
| h::t ->
let right, left = List.partition (rect_comp n h) t in
Node (kdl (n+1) left, h, kdl (n+1) right)
in
kdl 0 l
let rec kd_compress boxes =
let rec compress elt rest = function [] -> elt::rest
| h::t when _test_if_compressable elt h -> let b = _calc_new elt h in compress b rest t
| h::t when h = elt -> compress elt rest t
| h::t -> h::(compress elt rest t)
in
match boxes with Empty -> []
| Node (l, m, r) ->
let left = kd_compress l in
let right = kd_compress r in
(compress m left right)
有一些显而易见的改进空间(首先,我使用第一个元素而不是中间元素对kd树进行分区)