沿索引和列切片多索引熊猫数据框的一般方法是什么?
文档密集且完整,值得一读(https://pandas.pydata.org/pandas-docs/stable/user_guide/advanced.html),并且在堆栈溢出上有很多答案,这些答案集中于“行”或“列”上,如何解决(而且答案很彻底, Select rows in pandas MultiIndex DataFrame)。但是,我想要一个更直接的答案,其中包含同时解决这两个问题的示例。
cols_index = pd.MultiIndex.from_product([['a','b','c'],
['x','y','z']], names=['first','second'])
rows_index = pd.MultiIndex.from_product([['d','e','f'],
['u','v','w']], names=['third','fourth'])
df = pd.DataFrame(np.random.choice(10, (9,9)), index=rows_index, columns=cols_index)
df
Out[161]:
first a b
second c d c d
third e f e f e f e f
fourth fifth
j m 9 8 0 1 5 6 3 5
n 1 2 3 3 5 5 4 2
o 5 2 4 7 3 1 0 4
k m 6 6 3 3 4 4 1 7
n 0 6 0 9 2 3 7 5
o 7 8 0 9 7 8 3 4
l m 4 7 4 3 0 5 6 3
n 0 4 3 9 9 5 8 4
o 0 1 8 0 8 9 4 7
我想看看将索引和列中的各个级别进行切片的示例。
答案 0 :(得分:1)
这是我的通用解决方案...
idx = pd.IndexSlice
df.loc [idx [:,:],idx [:,:::]]
def check_if_close(a, b):
if (abs(b-a) < 0.1):
return True
else:
return False
print(check_if_close(9.1, 9.15)) #true
print(check_if_close(8.1, 9.15)) #false
print(check_if_close(7.06, 8.0)) #false
print(check_if_close(7.06, 7.1)) #true
df.loc [idx ['j','m'],idx ['a','c','f']]
Out[251]:
first a b
second c d c d
third e f e f e f e f
fourth fifth
j m 2 9 4 5 6 7 7 5
n 1 4 2 6 8 0 6 3
o 2 4 0 2 1 9 9 4
k m 6 5 0 0 9 3 4 0
n 3 1 6 4 2 3 0 4
o 0 7 1 6 9 7 5 7
l m 2 8 0 8 5 1 8 3
n 7 3 2 6 9 4 1 7
o 6 4 7 9 1 3 3 3
df.loc [idx [:,'m'],idx [:,'c',:]]
Out[252]: 9
df.loc [:, idx ['b','d','f']]
Out[253]:
first a b
second c c
third e f e f
fourth fifth
j m 2 9 6 7
k m 6 5 9 3
l m 2 8 5 1
df.loc [idx ['k','o'],:]
Out[254]:
fourth fifth
j m 5
n 3
o 4
k m 0
n 4
o 7
l m 3
n 7
o 3
Name: (b, d, f), dtype: int32