我无法计算滚动保持力。
我试图找出如何使groupby工作的方法,但似乎只适合计算经典保留率。
滚动保留-每个组在确切月份或之后登录的用户总数。
data = {'id':[1, 1, 1, 2, 2, 2, 2, 3, 3],
'group_month': ['2013-05', '2013-05', '2013-05', '2013-06', '2013-06', '2013-06', '2013-06', '2013-06', '2013-06'],
'login_month': ['2013-05', '2013-06', '2013-07', '2013-06', '2013-07', '2013-09', '2013-10', '2013-09', '2013-10']}
转换数据:
data = pd.DataFrame(data)
pd.to_datetime(data['group_month'], format='%Y-%m', errors='coerce')
pd.to_datetime(data['login_month'], format='%Y-%m', errors='coerce')
要计算经典留存率(计算我使用以下代码的确切月份中每个登录队列的用户数:
classic_ret = pd.DataFrame(data[(data['login_month'] >= data['group_month'])].groupby(['group_month', 'login_month'])['id'].count())
classic_ret.unstack()
滚动保留应具有以下输出:
+-------------+---------+---------+---------+---------+---------+---------+
| group_month | 2013-05 | 2013-06 | 2013-07 | 2013-08 | 2013-09 | 2013-10 |
+-------------+---------+---------+---------+---------+---------+---------+
| 2013-05 | 1 | 1 | 1 | 1 | 1 | 1 |
| 2013-06 | 0 | 1 | 1 | 1 | 2 | 2 |
+-------------+---------+---------+---------+---------+---------+---------+
答案 0 :(得分:2)
使用交叉表,我只能管理下表。
a = data.set_index('login_month').groupby('id').resample('M').last().ffill().drop('id', axis=1).reset_index()
pd.crosstab(a.group_month, a.login_month)
输出
login_month 2013-05-31 2013-06-30 2013-07-31 2013-08-31 2013-09-30 2013-10-31
group_month
2013-05-01 1 1 1 0 0 0
2013-06-01 0 1 1 1 2 2
但是,我们可以如下获得所需的值。
a = data.set_index('login_month').groupby('id').resample('M').last().ffill().drop('id', axis=1).reset_index()
pd.DataFrame(a[(a['login_month'] >= a['group_month'])].groupby(['group_month', 'login_month'])['id'].count()).unstack().fillna(method='ffill',axis=1).fillna(value=0)
输出
login_month 2013-05-31 2013-06-30 2013-07-31 2013-08-31 2013-09-30 2013-10-31
group_month
2013-05-01 1.0 1.0 1.0 1.0 1.0 1.0
2013-06-01 0.0 1.0 1.0 1.0 2.0 2.0