根据采样率调整时间序列

时间:2019-09-05 12:26:15

标签: python pandas time-series

我有不规则的时间序列数据,应该是每秒钟50个样本,但是有些时候它有10个样本,有些时候是一秒100个样本。我想在同一秒内将10个样本插入到50个样本中,并在一秒内删除50个样本以上的任何样本

为简单起见,我将正常采样率描述为5

TIMESTAMP           X           Y           Z
2017-10-31 11:11:22 -1.451385   -9.44754    -0.876785
2017-10-31 11:11:22 -1.435913   -9.628448   -0.914871
2017-10-31 11:11:22 -1.397827   -9.915283   -0.976761
2017-10-31 11:11:23 -1.234772   -10.162842  -0.808945
2017-10-31 11:11:23 -1.234772   -10.003357  -0.637558
2017-10-31 11:11:23 -1.316895   -9.918854   -0.290024
2017-10-31 11:11:23 -1.362122   -10.08786   0.070602
2017-10-31 11:11:23 -1.28595    -10.366364  0.276505
2017-10-31 11:11:24 -1.164551   -10.548462  0.472885
2017-10-31 11:11:24 -1.150269   -10.774597  0.82756
2017-10-31 11:11:24 -1.153839   -10.895996  1.163193
2017-10-31 11:11:24 -1.165741   -10.732941  1.304825
2017-10-31 11:11:24 -1.249054   -10.367554  1.07988
2017-10-31 11:11:24 -1.314514   -9.936707   0.935867
2017-10-31 11:11:24 -1.393066   -9.653442   0.768051
2017-10-31 11:11:25 -1.583496   -9.25235    0.69664
2017-10-31 11:11:25 -1.944122   -9.070251   0.344345
2017-10-31 11:11:25 -2.358307   -9.057159   -0.031754
2017-10-31 11:11:25 -2.477325   -9.035736   -0.39119

我希望它是

TIMESTAMP           X           Y           Z
2017-10-31 11:11:22 -1.451385   -9.44754    -0.876785
2017-10-31 11:11:22 -1.435913   -9.628448   -0.914871
2017-10-31 11:11:22 -1.397827   -9.915283   -0.976761
2017-11-01 11:11:22   NaN              NaN            NaN
2017-11-02 11:11:22   NaN              NaN            NaN
2017-10-31 11:11:23 -1.234772   -10.162842  -0.808945
2017-10-31 11:11:23 -1.234772   -10.003357  -0.637558
2017-10-31 11:11:23 -1.316895   -9.918854   -0.290024
2017-10-31 11:11:23 -1.362122   -10.08786   0.070602
2017-10-31 11:11:23 -1.28595    -10.366364  0.276505
2017-10-31 11:11:24 -1.164551   -10.548462  0.472885
2017-10-31 11:11:24 -1.150269   -10.774597  0.82756
2017-10-31 11:11:24 -1.153839   -10.895996  1.163193
2017-10-31 11:11:24 -1.165741   -10.732941  1.304825
2017-10-31 11:11:24 -1.249054   -10.367554  1.07988
2017-10-31 11:11:25 -1.583496   -9.25235    0.69664
2017-10-31 11:11:25 -1.944122   -9.070251   0.344345
2017-10-31 11:11:25 -2.358307   -9.057159   -0.031754
2017-10-31 11:11:25 -2.477325   -9.035736   -0.39119
2017-11-01 11:11:25    NaN             NaN            NaN




df.resample('10ms').first().ffill()

它做了一些插值,但是没有提供我所需要的

0 个答案:

没有答案