ml教程的这一部分:https://mlr.mlr-org.com/articles/tutorial/nested_resampling.html#filter-methods-with-tuning解释了如何将TuneWrapper与FilterWrapper一起使用以调整过滤器的阈值。但是,如果我的过滤器也需要调整的超参数(例如随机森林变量重要性过滤器)怎么办?除了阈值外,我似乎无法调整任何参数。
例如:
library(survival)
library(mlr)
data(veteran)
set.seed(24601)
task_id = "MAS"
mas.task <- makeSurvTask(id = task_id, data = veteran, target = c("time", "status"))
mas.task <- createDummyFeatures(mas.task)
tuning = makeResampleDesc("CV", iters=5, stratify=TRUE) # Tuning: 5-fold CV, no repeats
cox.filt.rsfrc.lrn = makeTuneWrapper(
makeFilterWrapper(
makeLearner(cl="surv.coxph", id = "cox.filt.rfsrc", predict.type="response"),
fw.method="randomForestSRC_importance",
cache=TRUE,
ntree=2000
),
resampling = tuning,
par.set = makeParamSet(
makeIntegerParam("fw.abs", lower=2, upper=10),
makeIntegerParam("mtry", lower = 5, upper = 15),
makeIntegerParam("nodesize", lower=3, upper=25)
),
control = makeTuneControlRandom(maxit=20),
show.info = TRUE)
产生错误消息:
checkTunerParset(学习器,参数集,度量,控件)中的错误: 只能调整存在学习者参数的参数:mtry,nodesize
有什么方法可以调整随机森林的超参数吗?
编辑:在评论中提出建议之后的其他尝试:
将调谐器环绕基础学习器,然后再送入过滤器(未显示过滤器)-失败
cox.lrn = makeLearner(cl="surv.coxph", id = "cox.filt.rfsrc", predict.type="response")
cox.tune = makeTuneWrapper(cox.lrn,
resampling = tuning,
measures=list(cindex),
par.set = makeParamSet(
makeIntegerParam("mtry", lower = 5, upper = 15),
makeIntegerParam("nodesize", lower=3, upper=25),
makeIntegerParam("fw.abs", lower=2, upper=10)
),
control = makeTuneControlRandom(maxit=20),
show.info = TRUE)
Error in checkTunerParset(learner, par.set, measures, control) :
Can only tune parameters for which learner parameters exist: mtry,nodesize,fw.abs
两个级别的调整-失败
cox.lrn = makeLearner(cl="surv.coxph", id = "cox.filt.rfsrc", predict.type="response")
cox.filt = makeFilterWrapper(cox.lrn,
fw.method="randomForestSRC_importance",
cache=TRUE,
ntree=2000)
cox.tune = makeTuneWrapper(cox.filt,
resampling = tuning,
measures=list(cindex),
par.set = makeParamSet(
makeIntegerParam("fw.abs", lower=2, upper=10)
),
control = makeTuneControlRandom(maxit=20),
show.info = TRUE)
cox.tune2 = makeTuneWrapper(cox.tune,
resampling = tuning,
measures=list(cindex),
par.set = makeParamSet(
makeIntegerParam("mtry", lower = 5, upper = 15),
makeIntegerParam("nodesize", lower=3, upper=25)
),
control = makeTuneControlRandom(maxit=20),
show.info = TRUE)
Error in makeBaseWrapper(id, learner$type, learner, learner.subclass = c(learner.subclass, :
Cannot wrap a tuning wrapper around another optimization wrapper!
答案 0 :(得分:2)
您目前似乎无法调整过滤器的超参数。您可以通过在makeFilterWrapper()
中传递某些参数来手动更改它们,但不能对其进行调整。
在过滤时,您只能调整fw.abs
,fw.perc
或fw.tresh
之一。
我不知道当对RandomForest过滤器使用不同的hyperpars时,对排名的影响有多大。一种检查鲁棒性的方法是在mtry
的帮助下,使用getFeatureImportance()
和朋友的不同设置来比较单个RF模型拟合的等级。如果它们之间的相关性很高,则可以放心地忽略RF滤波器的调谐。 (也许您要使用完全不附带此问题的其他过滤器?)
如果您坚持要使用此功能,则可能需要提高软件包的PR:)
lrn = makeLearner(cl = "surv.coxph", id = "cox.filt.rfsrc", predict.type = "response")
filter_wrapper = makeFilterWrapper(
lrn,
fw.method = "randomForestSRC_importance",
cache = TRUE,
ntrees = 2000
)
cox.filt.rsfrc.lrn = makeTuneWrapper(
filter_wrapper,
resampling = tuning,
par.set = makeParamSet(
makeIntegerParam("fw.abs", lower = 2, upper = 10)
),
control = makeTuneControlRandom(maxit = 20),
show.info = TRUE)