mlr:具有调整功能的过滤器方法

时间:2019-09-05 11:06:51

标签: r mlr

ml教程的这一部分:https://mlr.mlr-org.com/articles/tutorial/nested_resampling.html#filter-methods-with-tuning解释了如何将TuneWrapper与FilterWrapper一起使用以调整过滤器的阈值。但是,如果我的过滤器也需要调整的超参数(例如随机森林变量重要性过滤器)怎么办?除了阈值外,我似乎无法调整任何参数。

例如:

library(survival)
library(mlr)

data(veteran)
set.seed(24601)
task_id = "MAS"
mas.task <- makeSurvTask(id = task_id, data = veteran, target = c("time", "status"))
mas.task <- createDummyFeatures(mas.task)
tuning = makeResampleDesc("CV", iters=5, stratify=TRUE)                             # Tuning: 5-fold CV, no repeats

cox.filt.rsfrc.lrn = makeTuneWrapper(
      makeFilterWrapper(
        makeLearner(cl="surv.coxph", id = "cox.filt.rfsrc", predict.type="response"), 
        fw.method="randomForestSRC_importance",
        cache=TRUE,
        ntree=2000
      ), 
      resampling = tuning, 
      par.set = makeParamSet(
          makeIntegerParam("fw.abs", lower=2, upper=10),
          makeIntegerParam("mtry", lower = 5, upper = 15),
          makeIntegerParam("nodesize", lower=3, upper=25)
      ), 
      control = makeTuneControlRandom(maxit=20),
      show.info = TRUE)

产生错误消息:

checkTunerParset(学习器,参数集,度量,控件)中的错误:   只能调整存在学习者参数的参数:mtry,nodesize

有什么方法可以调整随机森林的超参数吗?

编辑:在评论中提出建议之后的其他尝试:

  1. 将调谐器环绕基础学习器,然后再送入过滤器(未显示过滤器)-失败

    cox.lrn =  makeLearner(cl="surv.coxph", id = "cox.filt.rfsrc", predict.type="response")
    cox.tune = makeTuneWrapper(cox.lrn, 
                       resampling = tuning, 
                       measures=list(cindex),
                       par.set = makeParamSet(
                         makeIntegerParam("mtry", lower = 5, upper = 15),
                         makeIntegerParam("nodesize", lower=3, upper=25),
                         makeIntegerParam("fw.abs", lower=2, upper=10)
                       ),
                       control = makeTuneControlRandom(maxit=20),
                       show.info = TRUE)
    
    Error in checkTunerParset(learner, par.set, measures, control) : 
    Can only tune parameters for which learner parameters exist: mtry,nodesize,fw.abs
    
  2. 两个级别的调整-失败

    cox.lrn =  makeLearner(cl="surv.coxph", id = "cox.filt.rfsrc", predict.type="response")
    cox.filt = makeFilterWrapper(cox.lrn,
                         fw.method="randomForestSRC_importance",
                         cache=TRUE,
                         ntree=2000)
    cox.tune = makeTuneWrapper(cox.filt, 
                       resampling = tuning, 
                       measures=list(cindex),
                       par.set = makeParamSet(
                         makeIntegerParam("fw.abs", lower=2, upper=10)
                       ),
                       control = makeTuneControlRandom(maxit=20),
                       show.info = TRUE)
    
    cox.tune2 = makeTuneWrapper(cox.tune, 
                       resampling = tuning, 
                       measures=list(cindex),
                       par.set = makeParamSet(
                         makeIntegerParam("mtry", lower = 5, upper = 15),
                         makeIntegerParam("nodesize", lower=3, upper=25)
                       ),
                       control = makeTuneControlRandom(maxit=20),
                       show.info = TRUE)
    
    Error in makeBaseWrapper(id, learner$type, learner, learner.subclass = c(learner.subclass,  : 
      Cannot wrap a tuning wrapper around another optimization wrapper!
    

1 个答案:

答案 0 :(得分:2)

您目前似乎无法调整过滤器的超参数。您可以通过在makeFilterWrapper()中传递某些参数来手动更改它们,但不能对其进行调整。 在过滤时,您只能调整fw.absfw.percfw.tresh之一。

我不知道当对RandomForest过滤器使用不同的hyperpars时,对排名的影响有多大。一种检查鲁棒性的方法是在mtry的帮助下,使用getFeatureImportance()和朋友的不同设置来比较单个RF模型拟合的等级。如果它们之间的相关性很高,则可以放心地忽略RF滤波器的调谐。 (也许您要使用完全不附带此问题的其他过滤器?)

如果您坚持要使用此功能,则可能需要提高软件包的PR:)

lrn = makeLearner(cl = "surv.coxph", id = "cox.filt.rfsrc", predict.type = "response")

filter_wrapper = makeFilterWrapper(
  lrn,
  fw.method = "randomForestSRC_importance",
  cache = TRUE,
  ntrees = 2000
)

cox.filt.rsfrc.lrn = makeTuneWrapper(
  filter_wrapper,
  resampling = tuning,
  par.set = makeParamSet(
    makeIntegerParam("fw.abs", lower = 2, upper = 10)
  ),
  control = makeTuneControlRandom(maxit = 20),
  show.info = TRUE)