我刚刚启动pyTorch并收到以下错误:
RuntimeError: size mismatch, m1: [128 x 256], m2: [400 x 120] at /pytorch/aten/src/THC/generic/THCTensorMathBlas.cu:268
我正在MNIST数据集上尝试LeNet体系结构。我正在尝试各种激活功能,虽然Tanh并没有出现此错误,但ReLU激活却出现了此错误。所以我想我为ReLU写的代码错了。
型号:
class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
self.cnn_model = nn.Sequential(
nn.Conv2d(1, 6, 5),
nn.ReLU(True),
nn.AvgPool2d(2, stride=2),
nn.Conv2d(6, 16, 5),
nn.ReLU(True),
nn.AvgPool2d(2, stride=2)
)
self.fc_model = nn.Sequential(
nn.Linear(400,120),
nn.ReLU(True),
nn.Linear(120,84),
nn.ReLU(True),
nn.Linear(84,10)
)
def forward(self, x):
print(x.shape)
x = self.cnn_model(x)
print(x.shape)
x = x.view(x.size(0), -1)
print(x.shape)
x = self.fc_model(x)
print(x.shape)
return x
我将批次大小保持为128:
数据导入:
batch_size = 128
trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transforms.ToTensor())
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True)
testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transforms.ToTensor())
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False)
评估和优化模型:
def evaluation(dataloader):
total, correct = 0, 0
for data in dataloader:
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
outputs = net(inputs)
_, pred = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (pred == labels).sum().item()
return 100 * correct / total
import torch.optim as optim
net = LeNet().to(device)
loss_fn = nn.CrossEntropyLoss()
opt = optim.Adam(net.parameters())
max_epochs = 16
for epoch in range(max_epochs):
for i, data in enumerate(trainloader, 0):
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
opt.zero_grad()
outputs = net(inputs)
loss = loss_fn(outputs, labels)
loss.backward()
opt.step()
print('Epoch: %d/%d' % (epoch, max_epochs))
我看到了一些较早的问题,但无法理解如何修改ReLU