我有两个矩阵:
target = np.array([[1, 1, 1, 1, 1],
[2, 2, 2, 2, 2],
[3, 3, 3, 3, 3]])
source = np.array([[11, 11, 11, 11, 11],
[22, 22, 22, 22, 22],
[33, 33, 33, 33, 33]])
,我想创建一个转换矩阵,将源矩阵投影到目标上。
我发现Scipy库提供了执行此操作的功能:
from scipy.spatial import procrustes
mtx1, mtx2, disparity = procrustes(target, source)
基于documentation,它表示:
因此,mtx2
是投影矩阵。
如果我还有其他数据,并且想使用Scipy用来将源矩阵投影到目标矩阵的“学习的转换矩阵”,将它们投影到目标矩阵,该怎么办? 目标一个?
如何使用Scipy?
答案 0 :(得分:1)
您需要修改函数才能返回转换矩阵(R
)。
删除注释后的源代码 如下:
def procrustes(data1, data2):
mtx1 = np.array(data1, dtype=np.double, copy=True)
mtx2 = np.array(data2, dtype=np.double, copy=True)
if mtx1.ndim != 2 or mtx2.ndim != 2:
raise ValueError("Input matrices must be two-dimensional")
if mtx1.shape != mtx2.shape:
raise ValueError("Input matrices must be of same shape")
if mtx1.size == 0:
raise ValueError("Input matrices must be >0 rows and >0 cols")
# translate all the data to the origin
mtx1 -= np.mean(mtx1, 0)
mtx2 -= np.mean(mtx2, 0)
norm1 = np.linalg.norm(mtx1)
norm2 = np.linalg.norm(mtx2)
if norm1 == 0 or norm2 == 0:
raise ValueError("Input matrices must contain >1 unique points")
# change scaling of data (in rows) such that trace(mtx*mtx') = 1
mtx1 /= norm1
mtx2 /= norm2
# transform mtx2 to minimize disparity
R, s = orthogonal_procrustes(mtx1, mtx2)
mtx2 = np.dot(mtx2, R.T) * s # HERE, the projected mtx2 is estimated.
# measure the dissimilarity between the two datasets
disparity = np.sum(np.square(mtx1 - mtx2))
return mtx1, mtx2, disparity, R
来源:https://github.com/scipy/scipy/blob/v1.3.0/scipy/spatial/_procrustes.py#L17-L132