我想拟合非线性混合模型,然后测试治疗组和对照组的参数之间的差异。
我正在使用lme4软件包中的nlmer。 我正在使用Oranges数据集作为此问题的测试数据。 随时间测量5棵树的周长。每棵树都显示逻辑增长。在基本示例中,我们将Tree包含为随机效果。 我扩展了数据,以便有一个治疗和对照组(治疗只是圆周值加倍的对照的副本)。 我的问题是,我想将“治疗”作为固定效应,然后测试治疗组和对照组的非线性模型参数Asym之间的差异。
library(lme4)
#Toy data based on Orange (lme4)
# Create a copy of Orange data, double the circumference values, make new labels for trees (no. 6-10) and label all as treatment (1)
Orange.with.treatment<-Orange
Orange.with.treatment$circumference<-Orange.with.treatment$circumference*2
Orange.with.treatment$Tree <- as.factor(as.numeric(Orange.with.treatment$Tree) + 5)
Orange.with.treatment$treat<- as.factor(rep(1,length(Orange$Tree)))
# Create a copy of Orange data and label all as control (1)
Orange.control<-Orange
Orange.control$treat<- as.factor(rep(0,length(Orange$Tree)))
# combine into one dataframe
Orange.full<-(rbind(Orange.control,Orange.with.treatment))
# a nlmer fit not considering treatment as a factor
startvec <- c(Asym = 200, xmid = 725, scal = 350)
(nm1 <- nlmer(circumference ~ SSlogis(age, Asym, xmid, scal) ~ Asym|Tree,
Orange.full, start = startvec))
# a nlmer fit considering treatment as a fixed factor?
startvec <- c(Asym = 200, xmid = 725, scal = 350)
(nm2 <- nlmer(circumference ~ SSlogis(age, Asym, xmid, scal) ~ Asym+treat|Tree,
Orange.full, start = startvec))
# test differences in parameters between treat and control?
我尝试在公式中与Asym一起添加对待,但我认为这是不正确的。 我想总结一下治疗和控制方面的Asym,以及一种统计检验两者之间差异的方法。
答案 0 :(得分:0)
由于您似乎愿意使用其他工具,因此这里提供了nlme
解决方案:
library(nlme)
mod <- nlme(circumference ~ SSlogis(age, Asym, xmid, scal), data = Orange.full,
fixed = Asym + xmid + scal ~ treat, random = Asym + xmid + scal ~ 1 | Tree,
start = c(200, 200, 725, 0, 350, 0), control = nlmeControl(msMaxIter = 1000))
summary(mod)
#Nonlinear mixed-effects model fit by maximum likelihood
# Model: circumference ~ SSlogis(age, Asym, xmid, scal)
# Data: Orange.full
# AIC BIC logLik
# 608.9452 638.1756 -291.4726
#
#Random effects:
# Formula: list(Asym ~ 1, xmid ~ 1, scal ~ 1)
# Level: Tree
# Structure: General positive-definite, Log-Cholesky parametrization
# StdDev Corr
#Asym.(Intercept) 43.23426 As.(I) xm.(I)
#xmid.(Intercept) 38.35359 -0.031
#scal.(Intercept) 32.49873 -0.968 0.279
#Residual 11.27260
#
#Fixed effects: Asym + xmid + scal ~ treat
# Value Std.Error DF t-value p-value
#Asym.(Intercept) 191.2135 22.30629 55 8.572177 0.0000
#Asym.treat1 193.0409 31.56922 55 6.114847 0.0000
#xmid.(Intercept) 722.4272 53.37976 55 13.533729 0.0000
#xmid.treat1 5.0466 62.02158 55 0.081368 0.9354
#scal.(Intercept) 349.4497 41.68009 55 8.384092 0.0000
#scal.treat1 7.3181 48.41709 55 0.151146 0.8804
#
#<snip>
如您所见,这显示了对渐近线的显着治疗效果,但对其他参数却没有达到预期的效果。